Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,662 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
from collections import namedtuple
from pdb import set_trace as st
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
"""
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
"""
# from nsr.networks_stylegan2 import FullyConnectedLayer as EqualLinear
# class GradualStyleBlock(Module):
# def __init__(self, in_c, out_c, spatial):
# super(GradualStyleBlock, self).__init__()
# self.out_c = out_c
# self.spatial = spatial
# num_pools = int(np.log2(spatial))
# modules = []
# modules += [
# Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
# nn.LeakyReLU()
# ]
# for i in range(num_pools - 1):
# modules += [
# Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
# nn.LeakyReLU()
# ]
# self.convs = nn.Sequential(*modules)
# self.linear = EqualLinear(out_c, out_c, lr_multiplier=1)
# def forward(self, x):
# x = self.convs(x)
# x = x.reshape(-1, self.out_c)
# x = self.linear(x)
# return x
# from project.models.model import ModulatedConv2d
class DemodulatedConv2d(nn.Module):
def __init__(self,
in_channel,
out_channel,
kernel_size=3,
stride=1,
padding=0,
bias=False,
dilation=1):
super().__init__()
# https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/411. fix droplet issue
self.eps = 1e-8
if not isinstance(kernel_size, tuple):
self.kernel_size = (kernel_size, kernel_size)
else:
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.weight = nn.Parameter(
# torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
torch.randn(1, out_channel, in_channel, *kernel_size))
self.bias = None
if bias:
self.bias = nn.Parameter(torch.randn(out_channel))
self.stride = stride
self.padding = padding
self.dilation = dilation
def forward(self, input):
batch, in_channel, height, width = input.shape
demod = torch.rsqrt(self.weight.pow(2).sum([2, 3, 4]) + 1e-8)
demod = demod.repeat_interleave(batch, 0)
weight = self.weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(
# batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
batch * self.out_channel,
in_channel,
*self.kernel_size)
input = input.view(1, batch * in_channel, height, width)
if self.bias is None:
out = F.conv2d(input,
weight,
padding=self.padding,
groups=batch,
dilation=self.dilation,
stride=self.stride)
else:
out = F.conv2d(input,
weight,
bias=self.bias,
padding=self.padding,
groups=batch,
dilation=self.dilation,
stride=self.stride)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class Flatten(Module):
def forward(self, input):
return input.reshape(input.size(0), -1)
def l2_norm(input, axis=1):
norm = torch.norm(input, 2, axis, True)
output = torch.div(input, norm)
return output
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
""" A named tuple describing a ResNet block. """
def get_block(in_channel, depth, num_units, stride=2):
return [Bottleneck(in_channel, depth, stride)
] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
def get_blocks(num_layers):
if num_layers == 50:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 100:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=13),
get_block(in_channel=128, depth=256, num_units=30),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 152:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=8),
get_block(in_channel=128, depth=256, num_units=36),
get_block(in_channel=256, depth=512, num_units=3)
]
else:
raise ValueError(
"Invalid number of layers: {}. Must be one of [50, 100, 152]".
format(num_layers))
return blocks
class SEModule(Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(channels,
channels // reduction,
kernel_size=1,
padding=0,
bias=False)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(channels // reduction,
channels,
kernel_size=1,
padding=0,
bias=False)
self.sigmoid = Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class bottleneck_IR(Module):
def __init__(self,
in_channel,
depth,
stride,
norm_layer=None,
demodulate=False):
super(bottleneck_IR, self).__init__()
if norm_layer is None:
norm_layer = BatchNorm2d
if demodulate:
conv2d = DemodulatedConv2d
else:
conv2d = Conv2d
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
# Conv2d(in_channel, depth, (1, 1), stride, bias=False),
conv2d(in_channel, depth, (1, 1), stride, bias=False),
norm_layer(depth))
# BatchNorm2d(depth)
self.res_layer = Sequential(
# BatchNorm2d(in_channel),
norm_layer(in_channel),
# Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
PReLU(depth),
# Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
conv2d(depth, depth, (3, 3), stride, 1, bias=False),
norm_layer(depth))
# BatchNorm2d(depth))
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class bottleneck_IR_SE(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR_SE, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
BatchNorm2d(depth))
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
BatchNorm2d(depth), SEModule(depth, 16))
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
def _upsample_add(x, y):
"""Upsample and add two feature maps.
Args:
x: (Variable) top feature map to be upsampled.
y: (Variable) lateral feature map.
Returns:
(Variable) added feature map.
Note in PyTorch, when input size is odd, the upsampled feature map
with `F.upsample(..., scale_factor=2, mode='nearest')`
maybe not equal to the lateral feature map size.
e.g.
original input size: [N,_,15,15] ->
conv2d feature map size: [N,_,8,8] ->
upsampled feature map size: [N,_,16,16]
So we choose bilinear upsample which supports arbitrary output sizes.
"""
_, _, H, W = y.size()
return F.interpolate(x, size=(H, W), mode='bilinear',
align_corners=True) + y
# from NeuRay
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
padding_mode='reflect')
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes,
out_planes,
kernel_size=1,
stride=stride,
bias=False,
padding_mode='reflect')
class ResidualBlock(nn.Module):
def __init__(self,
dim_in,
dim_out,
dim_inter=None,
use_norm=True,
norm_layer=nn.BatchNorm2d,
bias=False):
super().__init__()
if dim_inter is None:
dim_inter = dim_out
if use_norm:
self.conv = nn.Sequential(
norm_layer(dim_in),
nn.ReLU(True),
nn.Conv2d(dim_in,
dim_inter,
3,
1,
1,
bias=bias,
padding_mode='reflect'),
norm_layer(dim_inter),
nn.ReLU(True),
nn.Conv2d(dim_inter,
dim_out,
3,
1,
1,
bias=bias,
padding_mode='reflect'),
)
else:
self.conv = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(dim_in, dim_inter, 3, 1, 1),
nn.ReLU(True),
nn.Conv2d(dim_inter, dim_out, 3, 1, 1),
)
self.short_cut = None
if dim_in != dim_out:
self.short_cut = nn.Conv2d(dim_in, dim_out, 1, 1)
def forward(self, feats):
feats_out = self.conv(feats)
if self.short_cut is not None:
feats_out = self.short_cut(feats) + feats_out
else:
feats_out = feats_out + feats
return feats_out
class conv(nn.Module):
def __init__(self, num_in_layers, num_out_layers, kernel_size, stride):
super(conv, self).__init__()
self.kernel_size = kernel_size
self.conv = nn.Conv2d(num_in_layers,
num_out_layers,
kernel_size=kernel_size,
stride=stride,
padding=(self.kernel_size - 1) // 2,
padding_mode='reflect')
self.bn = nn.InstanceNorm2d(num_out_layers,
track_running_stats=False,
affine=True)
def forward(self, x):
return F.elu(self.bn(self.conv(x)), inplace=True)
class upconv(nn.Module):
def __init__(self, num_in_layers, num_out_layers, kernel_size, scale):
super(upconv, self).__init__()
self.scale = scale
self.conv = conv(num_in_layers, num_out_layers, kernel_size, 1)
def forward(self, x):
x = nn.functional.interpolate(x,
scale_factor=self.scale,
align_corners=True,
mode='bilinear')
return self.conv(x)
|