Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,163 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
# Copyright 2022 The Nerfstudio Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Collection of Losses.
"""
import torch
import torch.nn.functional as F
from torch import nn
from torchtyping import TensorType
from torch.autograd import Variable
import numpy as np
from math import exp
# from nerfstudio.cameras.rays import RaySamples
# from nerfstudio.field_components.field_heads import FieldHeadNames
L1Loss = nn.L1Loss
MSELoss = nn.MSELoss
LOSSES = {"L1": L1Loss, "MSE": MSELoss}
EPS = 1.0e-7
def outer(
t0_starts: TensorType[..., "num_samples_0"],
t0_ends: TensorType[..., "num_samples_0"],
t1_starts: TensorType[..., "num_samples_1"],
t1_ends: TensorType[..., "num_samples_1"],
y1: TensorType[..., "num_samples_1"],
) -> TensorType[..., "num_samples_0"]:
"""Faster version of
https://github.com/kakaobrain/NeRF-Factory/blob/f61bb8744a5cb4820a4d968fb3bfbed777550f4a/src/model/mipnerf360/helper.py#L117
https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/stepfun.py#L64
Args:
t0_starts: start of the interval edges
t0_ends: end of the interval edges
t1_starts: start of the interval edges
t1_ends: end of the interval edges
y1: weights
"""
cy1 = torch.cat([torch.zeros_like(y1[..., :1]), torch.cumsum(y1, dim=-1)], dim=-1)
idx_lo = torch.searchsorted(t1_starts.contiguous(), t0_starts.contiguous(), side="right") - 1
idx_lo = torch.clamp(idx_lo, min=0, max=y1.shape[-1] - 1)
idx_hi = torch.searchsorted(t1_ends.contiguous(), t0_ends.contiguous(), side="right")
idx_hi = torch.clamp(idx_hi, min=0, max=y1.shape[-1] - 1)
cy1_lo = torch.take_along_dim(cy1[..., :-1], idx_lo, dim=-1)
cy1_hi = torch.take_along_dim(cy1[..., 1:], idx_hi, dim=-1)
y0_outer = cy1_hi - cy1_lo
return y0_outer
def lossfun_outer(
t: TensorType[..., "num_samples+1"],
w: TensorType[..., "num_samples"],
t_env: TensorType[..., "num_samples+1"],
w_env: TensorType[..., "num_samples"],
):
"""
https://github.com/kakaobrain/NeRF-Factory/blob/f61bb8744a5cb4820a4d968fb3bfbed777550f4a/src/model/mipnerf360/helper.py#L136
https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/stepfun.py#L80
Args:
t: interval edges
w: weights
t_env: interval edges of the upper bound enveloping historgram
w_env: weights that should upper bound the inner (t,w) histogram
"""
w_outer = outer(t[..., :-1], t[..., 1:], t_env[..., :-1], t_env[..., 1:], w_env)
return torch.clip(w - w_outer, min=0) ** 2 / (w + EPS)
def ray_samples_to_sdist(ray_samples):
"""Convert ray samples to s space"""
starts = ray_samples.spacing_starts
ends = ray_samples.spacing_ends
sdist = torch.cat([starts[..., 0], ends[..., -1:, 0]], dim=-1) # (num_rays, num_samples + 1)
return sdist
def interlevel_loss(weights_list, ray_samples_list):
"""Calculates the proposal loss in the MipNeRF-360 paper.
https://github.com/kakaobrain/NeRF-Factory/blob/f61bb8744a5cb4820a4d968fb3bfbed777550f4a/src/model/mipnerf360/model.py#L515
https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/train_utils.py#L133
"""
c = ray_samples_to_sdist(ray_samples_list[-1]).detach()
w = weights_list[-1][..., 0].detach()
loss_interlevel = 0.0
for ray_samples, weights in zip(ray_samples_list[:-1], weights_list[:-1]):
sdist = ray_samples_to_sdist(ray_samples)
cp = sdist # (num_rays, num_samples + 1)
wp = weights[..., 0] # (num_rays, num_samples)
loss_interlevel += torch.mean(lossfun_outer(c, w, cp, wp))
return loss_interlevel
## zip-NeRF losses
def blur_stepfun(x, y, r):
x_c = torch.cat([x - r, x + r], dim=-1)
x_r, x_idx = torch.sort(x_c, dim=-1)
zeros = torch.zeros_like(y[:, :1])
y_1 = (torch.cat([y, zeros], dim=-1) - torch.cat([zeros, y], dim=-1)) / (2 * r)
x_idx = x_idx[:, :-1]
y_2 = torch.cat([y_1, -y_1], dim=-1)[
torch.arange(x_idx.shape[0]).reshape(-1, 1).expand(x_idx.shape).to(x_idx.device), x_idx
]
y_r = torch.cumsum((x_r[:, 1:] - x_r[:, :-1]) * torch.cumsum(y_2, dim=-1), dim=-1)
y_r = torch.cat([zeros, y_r], dim=-1)
return x_r, y_r
def interlevel_loss_zip(weights_list, ray_samples_list):
"""Calculates the proposal loss in the Zip-NeRF paper."""
c = ray_samples_to_sdist(ray_samples_list[-1]).detach()
w = weights_list[-1][..., 0].detach()
# 1. normalize
w_normalize = w / (c[:, 1:] - c[:, :-1])
loss_interlevel = 0.0
for ray_samples, weights, r in zip(ray_samples_list[:-1], weights_list[:-1], [0.03, 0.003]):
# 2. step blur with different r
x_r, y_r = blur_stepfun(c, w_normalize, r)
y_r = torch.clip(y_r, min=0)
assert (y_r >= 0.0).all()
# 3. accumulate
y_cum = torch.cumsum((y_r[:, 1:] + y_r[:, :-1]) * 0.5 * (x_r[:, 1:] - x_r[:, :-1]), dim=-1)
y_cum = torch.cat([torch.zeros_like(y_cum[:, :1]), y_cum], dim=-1)
# 4 loss
sdist = ray_samples_to_sdist(ray_samples)
cp = sdist # (num_rays, num_samples + 1)
wp = weights[..., 0] # (num_rays, num_samples)
# resample
inds = torch.searchsorted(x_r, cp, side="right")
below = torch.clamp(inds - 1, 0, x_r.shape[-1] - 1)
above = torch.clamp(inds, 0, x_r.shape[-1] - 1)
cdf_g0 = torch.gather(x_r, -1, below)
bins_g0 = torch.gather(y_cum, -1, below)
cdf_g1 = torch.gather(x_r, -1, above)
bins_g1 = torch.gather(y_cum, -1, above)
t = torch.clip(torch.nan_to_num((cp - cdf_g0) / (cdf_g1 - cdf_g0), 0), 0, 1)
bins = bins_g0 + t * (bins_g1 - bins_g0)
w_gt = bins[:, 1:] - bins[:, :-1]
# TODO here might be unstable when wp is very small
loss_interlevel += torch.mean(torch.clip(w_gt - wp, min=0) ** 2 / (wp + 1e-5))
return loss_interlevel
# Verified
def lossfun_distortion(t, w):
"""
https://github.com/kakaobrain/NeRF-Factory/blob/f61bb8744a5cb4820a4d968fb3bfbed777550f4a/src/model/mipnerf360/helper.py#L142
https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/stepfun.py#L266
"""
ut = (t[..., 1:] + t[..., :-1]) / 2
dut = torch.abs(ut[..., :, None] - ut[..., None, :])
loss_inter = torch.sum(w * torch.sum(w[..., None, :] * dut, dim=-1), dim=-1)
loss_intra = torch.sum(w**2 * (t[..., 1:] - t[..., :-1]), dim=-1) / 3
return loss_inter + loss_intra
def distortion_loss(weights_list, ray_samples_list):
"""From mipnerf360"""
c = ray_samples_to_sdist(ray_samples_list[-1])
w = weights_list[-1][..., 0]
loss = torch.mean(lossfun_distortion(c, w))
return loss
# def nerfstudio_distortion_loss(
# ray_samples: RaySamples,
# densities: TensorType["bs":..., "num_samples", 1] = None,
# weights: TensorType["bs":..., "num_samples", 1] = None,
# ) -> TensorType["bs":..., 1]:
# """Ray based distortion loss proposed in MipNeRF-360. Returns distortion Loss.
# .. math::
# \\mathcal{L}(\\mathbf{s}, \\mathbf{w}) =\\iint\\limits_{-\\infty}^{\\,\\,\\,\\infty}
# \\mathbf{w}_\\mathbf{s}(u)\\mathbf{w}_\\mathbf{s}(v)|u - v|\\,d_{u}\\,d_{v}
# where :math:`\\mathbf{w}_\\mathbf{s}(u)=\\sum_i w_i \\mathbb{1}_{[\\mathbf{s}_i, \\mathbf{s}_{i+1})}(u)`
# is the weight at location :math:`u` between bin locations :math:`s_i` and :math:`s_{i+1}`.
# Args:
# ray_samples: Ray samples to compute loss over
# densities: Predicted sample densities
# weights: Predicted weights from densities and sample locations
# """
# if torch.is_tensor(densities):
# assert not torch.is_tensor(weights), "Cannot use both densities and weights"
# # Compute the weight at each sample location
# weights = ray_samples.get_weights(densities)
# if torch.is_tensor(weights):
# assert not torch.is_tensor(densities), "Cannot use both densities and weights"
# starts = ray_samples.spacing_starts
# ends = ray_samples.spacing_ends
# assert starts is not None and ends is not None, "Ray samples must have spacing starts and ends"
# midpoints = (starts + ends) / 2.0 # (..., num_samples, 1)
# loss = (
# weights * weights[..., None, :, 0] * torch.abs(midpoints - midpoints[..., None, :, 0])
# ) # (..., num_samples, num_samples)
# loss = torch.sum(loss, dim=(-1, -2))[..., None] # (..., num_samples)
# loss = loss + 1 / 3.0 * torch.sum(weights**2 * (ends - starts), dim=-2)
# return loss
def orientation_loss(
weights: TensorType["bs":..., "num_samples", 1],
normals: TensorType["bs":..., "num_samples", 3],
viewdirs: TensorType["bs":..., 3],
):
"""Orientation loss proposed in Ref-NeRF.
Loss that encourages that all visible normals are facing towards the camera.
"""
w = weights
n = normals
v = viewdirs
n_dot_v = (n * v[..., None, :]).sum(axis=-1)
return (w[..., 0] * torch.fmin(torch.zeros_like(n_dot_v), n_dot_v) ** 2).sum(dim=-1)
def pred_normal_loss(
weights: TensorType["bs":..., "num_samples", 1],
normals: TensorType["bs":..., "num_samples", 3],
pred_normals: TensorType["bs":..., "num_samples", 3],
):
"""Loss between normals calculated from density and normals from prediction network."""
return (weights[..., 0] * (1.0 - torch.sum(normals * pred_normals, dim=-1))).sum(dim=-1)
def monosdf_normal_loss(normal_pred: torch.Tensor, normal_gt: torch.Tensor):
"""normal consistency loss as monosdf
Args:
normal_pred (torch.Tensor): volume rendered normal
normal_gt (torch.Tensor): monocular normal
"""
normal_gt = torch.nn.functional.normalize(normal_gt, p=2, dim=-1)
normal_pred = torch.nn.functional.normalize(normal_pred, p=2, dim=-1)
l1 = torch.abs(normal_pred - normal_gt).sum(dim=-1).mean()
cos = (1.0 - torch.sum(normal_pred * normal_gt, dim=-1)).mean()
return l1 + cos
# copy from MiDaS
def compute_scale_and_shift(prediction, target, mask):
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
a_00 = torch.sum(mask * prediction * prediction, (1, 2))
a_01 = torch.sum(mask * prediction, (1, 2))
a_11 = torch.sum(mask, (1, 2))
# right hand side: b = [b_0, b_1]
b_0 = torch.sum(mask * prediction * target, (1, 2))
b_1 = torch.sum(mask * target, (1, 2))
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b
x_0 = torch.zeros_like(b_0)
x_1 = torch.zeros_like(b_1)
det = a_00 * a_11 - a_01 * a_01
valid = det.nonzero()
x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / det[valid]
x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / det[valid]
return x_0, x_1
def reduction_batch_based(image_loss, M):
# average of all valid pixels of the batch
# avoid division by 0 (if sum(M) = sum(sum(mask)) = 0: sum(image_loss) = 0)
divisor = torch.sum(M)
if divisor == 0:
return 0
else:
return torch.sum(image_loss) / divisor
def reduction_image_based(image_loss, M):
# mean of average of valid pixels of an image
# avoid division by 0 (if M = sum(mask) = 0: image_loss = 0)
valid = M.nonzero()
image_loss[valid] = image_loss[valid] / M[valid]
return torch.mean(image_loss)
def mse_loss(prediction, target, mask, reduction=reduction_batch_based):
M = torch.sum(mask, (1, 2))
res = prediction - target
image_loss = torch.sum(mask * res * res, (1, 2))
return reduction(image_loss, 2 * M)
def gradient_loss(prediction, target, mask, reduction=reduction_batch_based):
M = torch.sum(mask, (1, 2))
diff = prediction - target
diff = torch.mul(mask, diff)
grad_x = torch.abs(diff[:, :, 1:] - diff[:, :, :-1])
mask_x = torch.mul(mask[:, :, 1:], mask[:, :, :-1])
grad_x = torch.mul(mask_x, grad_x)
grad_y = torch.abs(diff[:, 1:, :] - diff[:, :-1, :])
mask_y = torch.mul(mask[:, 1:, :], mask[:, :-1, :])
grad_y = torch.mul(mask_y, grad_y)
image_loss = torch.sum(grad_x, (1, 2)) + torch.sum(grad_y, (1, 2))
return reduction(image_loss, M)
class MiDaSMSELoss(nn.Module):
def __init__(self, reduction="batch-based"):
super().__init__()
if reduction == "batch-based":
self.__reduction = reduction_batch_based
else:
self.__reduction = reduction_image_based
def forward(self, prediction, target, mask):
return mse_loss(prediction, target, mask, reduction=self.__reduction)
class GradientLoss(nn.Module):
def __init__(self, scales=4, reduction="batch-based"):
super().__init__()
if reduction == "batch-based":
self.__reduction = reduction_batch_based
else:
self.__reduction = reduction_image_based
self.__scales = scales
def forward(self, prediction, target, mask):
total = 0
for scale in range(self.__scales):
step = pow(2, scale)
total += gradient_loss(
prediction[:, ::step, ::step],
target[:, ::step, ::step],
mask[:, ::step, ::step],
reduction=self.__reduction,
)
return total
class ScaleAndShiftInvariantLoss(nn.Module):
def __init__(self, alpha=0.5, scales=4, reduction="batch-based"):
super().__init__()
self.__data_loss = MiDaSMSELoss(reduction=reduction)
self.__regularization_loss = GradientLoss(scales=scales, reduction=reduction)
self.__alpha = alpha
self.__prediction_ssi = None
def forward(self, prediction, target, mask):
scale, shift = compute_scale_and_shift(prediction, target, mask)
self.__prediction_ssi = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1)
total = self.__data_loss(self.__prediction_ssi, target, mask)
if self.__alpha > 0:
total += self.__alpha * self.__regularization_loss(self.__prediction_ssi, target, mask)
return total
def __get_prediction_ssi(self):
return self.__prediction_ssi
prediction_ssi = property(__get_prediction_ssi)
# end copy
# copy from https://github.com/svip-lab/Indoor-SfMLearner/blob/0d682b7ce292484e5e3e2161fc9fc07e2f5ca8d1/layers.py#L218
class SSIM(nn.Module):
"""Layer to compute the SSIM loss between a pair of images"""
def __init__(self, patch_size):
super(SSIM, self).__init__()
self.mu_x_pool = nn.AvgPool2d(patch_size, 1)
self.mu_y_pool = nn.AvgPool2d(patch_size, 1)
self.sig_x_pool = nn.AvgPool2d(patch_size, 1)
self.sig_y_pool = nn.AvgPool2d(patch_size, 1)
self.sig_xy_pool = nn.AvgPool2d(patch_size, 1)
self.refl = nn.ReflectionPad2d(patch_size // 2)
self.C1 = 0.01**2
self.C2 = 0.03**2
def forward(self, x, y):
x = self.refl(x)
y = self.refl(y)
mu_x = self.mu_x_pool(x)
mu_y = self.mu_y_pool(y)
sigma_x = self.sig_x_pool(x**2) - mu_x**2
sigma_y = self.sig_y_pool(y**2) - mu_y**2
sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y
SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2)
SSIM_d = (mu_x**2 + mu_y**2 + self.C1) * (sigma_x + sigma_y + self.C2)
return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1)
# TODO test different losses
class NCC(nn.Module):
"""Layer to compute the normalization cross correlation (NCC) of patches"""
def __init__(self, patch_size: int = 11, min_patch_variance: float = 0.01):
super(NCC, self).__init__()
self.patch_size = patch_size
self.min_patch_variance = min_patch_variance
def forward(self, x, y):
# TODO if we use gray image we should do it right after loading the image to save computations
# to gray image
x = torch.mean(x, dim=1)
y = torch.mean(y, dim=1)
x_mean = torch.mean(x, dim=(1, 2), keepdim=True)
y_mean = torch.mean(y, dim=(1, 2), keepdim=True)
x_normalized = x - x_mean
y_normalized = y - y_mean
norm = torch.sum(x_normalized * y_normalized, dim=(1, 2))
var = torch.square(x_normalized).sum(dim=(1, 2)) * torch.square(y_normalized).sum(dim=(1, 2))
denom = torch.sqrt(var + 1e-6)
ncc = norm / (denom + 1e-6)
# ignore pathces with low variances
not_valid = (torch.square(x_normalized).sum(dim=(1, 2)) < self.min_patch_variance) | (
torch.square(y_normalized).sum(dim=(1, 2)) < self.min_patch_variance
)
ncc[not_valid] = 1.0
score = 1 - ncc.clip(-1.0, 1.0) # 0->2: smaller, better
return score[:, None, None, None]
class MultiViewLoss(nn.Module):
"""compute multi-view consistency loss"""
def __init__(self, patch_size: int = 11, topk: int = 4, min_patch_variance: float = 0.01):
super(MultiViewLoss, self).__init__()
self.patch_size = patch_size
self.topk = topk
self.min_patch_variance = min_patch_variance
# TODO make metric configurable
# self.ssim = SSIM(patch_size=patch_size)
# self.ncc = NCC(patch_size=patch_size)
self.ssim = NCC(patch_size=patch_size, min_patch_variance=min_patch_variance)
self.iter = 0
def forward(self, patches: torch.Tensor, valid: torch.Tensor):
"""take the mim
Args:
patches (torch.Tensor): _description_
valid (torch.Tensor): _description_
Returns:
_type_: _description_
"""
num_imgs, num_rays, _, num_channels = patches.shape
if num_rays <= 0:
return torch.tensor(0.0).to(patches.device)
ref_patches = (
patches[:1, ...]
.reshape(1, num_rays, self.patch_size, self.patch_size, num_channels)
.expand(num_imgs - 1, num_rays, self.patch_size, self.patch_size, num_channels)
.reshape(-1, self.patch_size, self.patch_size, num_channels)
.permute(0, 3, 1, 2)
) # [N_src*N_rays, 3, patch_size, patch_size]
src_patches = (
patches[1:, ...]
.reshape(num_imgs - 1, num_rays, self.patch_size, self.patch_size, num_channels)
.reshape(-1, self.patch_size, self.patch_size, num_channels)
.permute(0, 3, 1, 2)
) # [N_src*N_rays, 3, patch_size, patch_size]
# apply same reshape to the valid mask
src_patches_valid = (
valid[1:, ...]
.reshape(num_imgs - 1, num_rays, self.patch_size, self.patch_size, 1)
.reshape(-1, self.patch_size, self.patch_size, 1)
.permute(0, 3, 1, 2)
) # [N_src*N_rays, 1, patch_size, patch_size]
ssim = self.ssim(ref_patches.detach(), src_patches)
ssim = torch.mean(ssim, dim=(1, 2, 3))
ssim = ssim.reshape(num_imgs - 1, num_rays)
# ignore invalid patch by setting ssim error to very large value
ssim_valid = (
src_patches_valid.reshape(-1, self.patch_size * self.patch_size).all(dim=-1).reshape(num_imgs - 1, num_rays)
)
# we should mask the error after we select the topk value, otherwise we might select far way patches that happens to be inside the image
# ssim[torch.logical_not(ssim_valid)] = 1.1 # max ssim_error is 1
min_ssim, idx = torch.topk(ssim, k=self.topk, largest=False, dim=0, sorted=True)
min_ssim_valid = ssim_valid[idx, torch.arange(num_rays)[None].expand_as(idx)]
# TODO how to set this value for better visualization
min_ssim[torch.logical_not(min_ssim_valid)] = 0.0 # max ssim_error is 1
if False:
# visualization of topK error computations
import cv2
import numpy as np
vis_patch_num = num_rays
K = min(100, vis_patch_num)
image = (
patches[:, :vis_patch_num, :, :]
.reshape(-1, vis_patch_num, self.patch_size, self.patch_size, 3)
.permute(1, 2, 0, 3, 4)
.reshape(vis_patch_num * self.patch_size, -1, 3)
)
src_patches_reshaped = src_patches.reshape(
num_imgs - 1, num_rays, 3, self.patch_size, self.patch_size
).permute(1, 0, 3, 4, 2)
idx = idx.permute(1, 0)
selected_patch = (
src_patches_reshaped[torch.arange(num_rays)[:, None].expand(idx.shape), idx]
.permute(0, 2, 1, 3, 4)
.reshape(num_rays, self.patch_size, self.topk * self.patch_size, 3)[:vis_patch_num]
.reshape(-1, self.topk * self.patch_size, 3)
)
# apply same reshape to the valid mask
src_patches_valid_reshaped = src_patches_valid.reshape(
num_imgs - 1, num_rays, 1, self.patch_size, self.patch_size
).permute(1, 0, 3, 4, 2)
selected_patch_valid = (
src_patches_valid_reshaped[torch.arange(num_rays)[:, None].expand(idx.shape), idx]
.permute(0, 2, 1, 3, 4)
.reshape(num_rays, self.patch_size, self.topk * self.patch_size, 1)[:vis_patch_num]
.reshape(-1, self.topk * self.patch_size, 1)
)
# valid to image
selected_patch_valid = selected_patch_valid.expand_as(selected_patch).float()
# breakpoint()
image = torch.cat([selected_patch_valid, selected_patch, image], dim=1)
# select top rays with highest errors
image = image.reshape(num_rays, self.patch_size, -1, 3)
_, idx2 = torch.topk(
torch.sum(min_ssim, dim=0) / (min_ssim_valid.float().sum(dim=0) + 1e-6),
k=K,
largest=True,
dim=0,
sorted=True,
)
image = image[idx2].reshape(K * self.patch_size, -1, 3)
cv2.imwrite(f"vis/{self.iter}.png", (image.detach().cpu().numpy() * 255).astype(np.uint8)[..., ::-1])
self.iter += 1
if self.iter == 9:
breakpoint()
return torch.sum(min_ssim) / (min_ssim_valid.float().sum() + 1e-6)
# sensor depth loss, adapted from https://github.com/dazinovic/neural-rgbd-surface-reconstruction/blob/main/losses.py
# class SensorDepthLoss(nn.Module):
# """Sensor Depth loss"""
# def __init__(self, truncation: float):
# super(SensorDepthLoss, self).__init__()
# self.truncation = truncation # 0.05 * 0.3 5cm scaled
# def forward(self, batch, outputs):
# """take the mim
# Args:
# batch (Dict): inputs
# outputs (Dict): outputs data from surface model
# Returns:
# l1_loss: l1 loss
# freespace_loss: free space loss
# sdf_loss: sdf loss
# """
# depth_pred = outputs["depth"]
# depth_gt = batch["sensor_depth"].to(depth_pred.device)[..., None]
# valid_gt_mask = depth_gt > 0.0
# l1_loss = torch.sum(valid_gt_mask * torch.abs(depth_gt - depth_pred)) / (valid_gt_mask.sum() + 1e-6)
# # free space loss and sdf loss
# ray_samples = outputs["ray_samples"]
# filed_outputs = outputs["field_outputs"]
# pred_sdf = filed_outputs[FieldHeadNames.SDF][..., 0]
# directions_norm = outputs["directions_norm"]
# z_vals = ray_samples.frustums.starts[..., 0] / directions_norm
# truncation = self.truncation
# front_mask = valid_gt_mask & (z_vals < (depth_gt - truncation))
# back_mask = valid_gt_mask & (z_vals > (depth_gt + truncation))
# sdf_mask = valid_gt_mask & (~front_mask) & (~back_mask)
# num_fs_samples = front_mask.sum()
# num_sdf_samples = sdf_mask.sum()
# num_samples = num_fs_samples + num_sdf_samples + 1e-6
# fs_weight = 1.0 - num_fs_samples / num_samples
# sdf_weight = 1.0 - num_sdf_samples / num_samples
# free_space_loss = torch.mean((F.relu(truncation - pred_sdf) * front_mask) ** 2) * fs_weight
# sdf_loss = torch.mean(((z_vals + pred_sdf) - depth_gt) ** 2 * sdf_mask) * sdf_weight
# return l1_loss, free_space_loss, sdf_loss
r"""Implements Stochastic Structural SIMilarity(S3IM) algorithm.
It is proposed in the ICCV2023 paper
`S3IM: Stochastic Structural SIMilarity and Its Unreasonable Effectiveness for Neural Fields`.
Arguments:
s3im_kernel_size (int): kernel size in ssim's convolution(default: 4)
s3im_stride (int): stride in ssim's convolution(default: 4)
s3im_repeat_time (int): repeat time in re-shuffle virtual patch(default: 10)
s3im_patch_height (height): height of virtual patch(default: 64)
"""
class S3IM(torch.nn.Module):
def __init__(self, s3im_kernel_size = 4, s3im_stride=4, s3im_repeat_time=10, s3im_patch_height=64, size_average = True):
super(S3IM, self).__init__()
self.s3im_kernel_size = s3im_kernel_size
self.s3im_stride = s3im_stride
self.s3im_repeat_time = s3im_repeat_time
self.s3im_patch_height = s3im_patch_height
self.size_average = size_average
self.channel = 1
self.s3im_kernel = self.create_kernel(s3im_kernel_size, self.channel)
def gaussian(self, s3im_kernel_size, sigma):
gauss = torch.Tensor([exp(-(x - s3im_kernel_size//2)**2/float(2*sigma**2)) for x in range(s3im_kernel_size)])
return gauss/gauss.sum()
def create_kernel(self, s3im_kernel_size, channel):
_1D_window = self.gaussian(s3im_kernel_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
s3im_kernel = Variable(_2D_window.expand(channel, 1, s3im_kernel_size, s3im_kernel_size).contiguous())
return s3im_kernel
def _ssim(self, img1, img2, s3im_kernel, s3im_kernel_size, channel, size_average = True, s3im_stride=None):
mu1 = F.conv2d(img1, s3im_kernel, padding = (s3im_kernel_size-1)//2, groups = channel, stride=s3im_stride)
mu2 = F.conv2d(img2, s3im_kernel, padding = (s3im_kernel_size-1)//2, groups = channel, stride=s3im_stride)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, s3im_kernel, padding = (s3im_kernel_size-1)//2, groups = channel, stride=s3im_stride) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, s3im_kernel, padding = (s3im_kernel_size-1)//2, groups = channel, stride=s3im_stride) - mu2_sq
sigma12 = F.conv2d(img1*img2, s3im_kernel, padding = (s3im_kernel_size-1)//2, groups = channel, stride=s3im_stride) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def ssim_loss(self, img1, img2):
"""
img1, img2: torch.Tensor([b,c,h,w])
"""
(_, channel, _, _) = img1.size()
if channel == self.channel and self.s3im_kernel.data.type() == img1.data.type():
s3im_kernel = self.s3im_kernel
else:
s3im_kernel = self.create_kernel(self.s3im_kernel_size, channel)
if img1.is_cuda:
s3im_kernel = s3im_kernel.cuda(img1.get_device())
s3im_kernel = s3im_kernel.type_as(img1)
self.s3im_kernel = s3im_kernel
self.channel = channel
return self._ssim(img1, img2, s3im_kernel, self.s3im_kernel_size, channel, self.size_average, s3im_stride=self.s3im_stride)
def forward(self, src_vec, tar_vec):
loss = 0.0
index_list = []
for i in range(self.s3im_repeat_time):
if i == 0:
tmp_index = torch.arange(len(tar_vec))
index_list.append(tmp_index)
else:
ran_idx = torch.randperm(len(tar_vec))
index_list.append(ran_idx)
res_index = torch.cat(index_list)
tar_all = tar_vec[res_index]
src_all = src_vec[res_index]
tar_patch = tar_all.permute(1, 0).reshape(1, 3, self.s3im_patch_height, -1)
src_patch = src_all.permute(1, 0).reshape(1, 3, self.s3im_patch_height, -1)
loss = (1 - self.ssim_loss(src_patch, tar_patch))
return loss
|