File size: 36,486 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.

from threading import local
import torch
import torch.nn as nn
from utils.torch_utils import persistence
from .networks_stylegan2 import Generator as StyleGAN2Backbone
from .networks_stylegan2 import ToRGBLayer, SynthesisNetwork, MappingNetwork
from .volumetric_rendering.renderer import ImportanceRenderer
from .volumetric_rendering.ray_sampler import RaySampler, PatchRaySampler
import dnnlib
from pdb import set_trace as st
import math

import torch.nn.functional as F
import itertools
from ldm.modules.diffusionmodules.model import SimpleDecoder, Decoder


@persistence.persistent_class
class TriPlaneGenerator(torch.nn.Module):

    def __init__(
            self,
            z_dim,  # Input latent (Z) dimensionality.
            c_dim,  # Conditioning label (C) dimensionality.
            w_dim,  # Intermediate latent (W) dimensionality.
            img_resolution,  # Output resolution.
            img_channels,  # Number of output color channels.
            sr_num_fp16_res=0,
            mapping_kwargs={},  # Arguments for MappingNetwork.
            rendering_kwargs={},
            sr_kwargs={},
            bcg_synthesis_kwargs={},
            # pifu_kwargs={},
            # ada_kwargs={},  # not used, place holder
            **synthesis_kwargs,  # Arguments for SynthesisNetwork.
    ):
        super().__init__()
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.img_resolution = img_resolution
        self.img_channels = img_channels
        self.renderer = ImportanceRenderer()
        # if 'PatchRaySampler' in rendering_kwargs:
        #     self.ray_sampler = PatchRaySampler()
        # else:
        #     self.ray_sampler = RaySampler()
        self.backbone = StyleGAN2Backbone(z_dim,
                                          c_dim,
                                          w_dim,
                                          img_resolution=256,
                                          img_channels=32 * 3,
                                          mapping_kwargs=mapping_kwargs,
                                          **synthesis_kwargs)
        self.superresolution = dnnlib.util.construct_class_by_name(
            class_name=rendering_kwargs['superresolution_module'],
            channels=32,
            img_resolution=img_resolution,
            sr_num_fp16_res=sr_num_fp16_res,
            sr_antialias=rendering_kwargs['sr_antialias'],
            **sr_kwargs)

        # self.bcg_synthesis = None
        if rendering_kwargs.get('use_background', False):
            self.bcg_synthesis = SynthesisNetwork(
                w_dim,
                img_resolution=self.superresolution.input_resolution,
                img_channels=32,
                **bcg_synthesis_kwargs)
            self.bcg_mapping = MappingNetwork(z_dim=z_dim,
                                              c_dim=c_dim,
                                              w_dim=w_dim,
                                              num_ws=self.num_ws,
                                              **mapping_kwargs)
        # New mapping network for self-adaptive camera pose, dim = 3

        self.decoder = OSGDecoder(
            32, {
                'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1),
                'decoder_output_dim': 32
            })
        self.neural_rendering_resolution = 64
        self.rendering_kwargs = rendering_kwargs

        self._last_planes = None
        self.pool_256 = torch.nn.AdaptiveAvgPool2d((256, 256))

    def mapping(self,
                z,
                c,
                truncation_psi=1,
                truncation_cutoff=None,
                update_emas=False):
        if self.rendering_kwargs['c_gen_conditioning_zero']:
            c = torch.zeros_like(c)
        return self.backbone.mapping(z,
                                     c *
                                     self.rendering_kwargs.get('c_scale', 0),
                                     truncation_psi=truncation_psi,
                                     truncation_cutoff=truncation_cutoff,
                                     update_emas=update_emas)

    def synthesis(self,
                  ws,
                  c,
                  neural_rendering_resolution=None,
                  update_emas=False,
                  cache_backbone=False,
                  use_cached_backbone=False,
                  return_meta=False,
                  return_raw_only=False,
                  **synthesis_kwargs):

        return_sampling_details_flag = self.rendering_kwargs.get(
            'return_sampling_details_flag', False)

        if return_sampling_details_flag:
            return_meta = True

        cam2world_matrix = c[:, :16].view(-1, 4, 4)
        # cam2world_matrix = torch.eye(4, device=c.device).unsqueeze(0).repeat_interleave(c.shape[0], dim=0)
        # c[:, :16] = cam2world_matrix.view(-1, 16)
        intrinsics = c[:, 16:25].view(-1, 3, 3)

        if neural_rendering_resolution is None:
            neural_rendering_resolution = self.neural_rendering_resolution
        else:
            self.neural_rendering_resolution = neural_rendering_resolution

        H = W = self.neural_rendering_resolution
        # Create a batch of rays for volume rendering
        ray_origins, ray_directions = self.ray_sampler(
            cam2world_matrix, intrinsics, neural_rendering_resolution)

        # Create triplanes by running StyleGAN backbone
        N, M, _ = ray_origins.shape
        if use_cached_backbone and self._last_planes is not None:
            planes = self._last_planes
        else:
            planes = self.backbone.synthesis(
                ws[:, :self.backbone.num_ws, :],  # ws, BS 14 512
                update_emas=update_emas,
                **synthesis_kwargs)
        if cache_backbone:
            self._last_planes = planes

        # Reshape output into three 32-channel planes
        planes = planes.view(len(planes), 3, 32, planes.shape[-2],
                             planes.shape[-1])  # BS 96 256 256

        # Perform volume rendering
        # st()
        rendering_details = self.renderer(
            planes,
            self.decoder,
            ray_origins,
            ray_directions,
            self.rendering_kwargs,
            #   return_meta=True)
            return_meta=return_meta)

        # calibs = create_calib_matrix(c)
        # all_coords = rendering_details['all_coords']
        # B, num_rays, S, _ = all_coords.shape
        # all_coords_B3N = all_coords.reshape(B, -1, 3).permute(0,2,1)
        # homo_coords = torch.cat([all_coords, torch.zeros_like(all_coords[..., :1])], -1)
        # homo_coords[..., -1] = 1
        # homo_coords = homo_coords.reshape(homo_coords.shape[0], -1, 4)
        # homo_coords = homo_coords.permute(0,2,1)
        # xyz = calibs @ homo_coords
        # xyz = xyz.permute(0,2,1).reshape(B, H, W, S, 4)
        # st()

        # xyz_proj = perspective(all_coords_B3N, calibs)
        # xyz_proj = xyz_proj.permute(0,2,1).reshape(B, H, W, S, 3) # [0,0] - [1,1]
        # st()

        feature_samples, depth_samples, weights_samples = (
            rendering_details[k]
            for k in ['feature_samples', 'depth_samples', 'weights_samples'])

        if return_sampling_details_flag:
            shape_synthesized = rendering_details['shape_synthesized']
        else:
            shape_synthesized = None

        # Reshape into 'raw' neural-rendered image
        feature_image = feature_samples.permute(0, 2, 1).reshape(
            N, feature_samples.shape[-1], H, W).contiguous()  # B 32 H W
        depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)

        # Run superresolution to get final image
        rgb_image = feature_image[:, :3]  # B 3 H W
        if not return_raw_only:
            sr_image = self.superresolution(
                rgb_image,
                feature_image,
                ws[:, -1:, :],  # only use the last layer
                noise_mode=self.rendering_kwargs['superresolution_noise_mode'],
                **{
                    k: synthesis_kwargs[k]
                    for k in synthesis_kwargs.keys() if k != 'noise_mode'
                })
        else:
            sr_image = rgb_image

        ret_dict = {
            'image': sr_image,
            'image_raw': rgb_image,
            'image_depth': depth_image,
            'weights_samples': weights_samples,
            'shape_synthesized': shape_synthesized
        }
        if return_meta:
            ret_dict.update({
                # 'feature_image': feature_image,
                'feature_volume':
                rendering_details['feature_volume'],
                'all_coords':
                rendering_details['all_coords'],
                'weights':
                rendering_details['weights'],
            })

        return ret_dict

    def sample(self,
               coordinates,
               directions,
               z,
               c,
               truncation_psi=1,
               truncation_cutoff=None,
               update_emas=False,
               **synthesis_kwargs):
        # Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes.
        ws = self.mapping(z,
                          c,
                          truncation_psi=truncation_psi,
                          truncation_cutoff=truncation_cutoff,
                          update_emas=update_emas)
        planes = self.backbone.synthesis(ws,
                                         update_emas=update_emas,
                                         **synthesis_kwargs)
        planes = planes.view(len(planes), 3, 32, planes.shape[-2],
                             planes.shape[-1])
        return self.renderer.run_model(planes, self.decoder, coordinates,
                                       directions, self.rendering_kwargs)

    def sample_mixed(self,
                     coordinates,
                     directions,
                     ws,
                     truncation_psi=1,
                     truncation_cutoff=None,
                     update_emas=False,
                     **synthesis_kwargs):
        # Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z'
        planes = self.backbone.synthesis(ws,
                                         update_emas=update_emas,
                                         **synthesis_kwargs)
        planes = planes.view(len(planes), 3, 32, planes.shape[-2],
                             planes.shape[-1])
        return self.renderer.run_model(planes, self.decoder, coordinates,
                                       directions, self.rendering_kwargs)

    def forward(self,
                z,
                c,
                truncation_psi=1,
                truncation_cutoff=None,
                neural_rendering_resolution=None,
                update_emas=False,
                cache_backbone=False,
                use_cached_backbone=False,
                **synthesis_kwargs):
        # Render a batch of generated images.
        ws = self.mapping(z,
                          c,
                          truncation_psi=truncation_psi,
                          truncation_cutoff=truncation_cutoff,
                          update_emas=update_emas)
        return self.synthesis(
            ws,
            c,
            update_emas=update_emas,
            neural_rendering_resolution=neural_rendering_resolution,
            cache_backbone=cache_backbone,
            use_cached_backbone=use_cached_backbone,
            **synthesis_kwargs)


from .networks_stylegan2 import FullyConnectedLayer

# class OSGDecoder(torch.nn.Module):

#     def __init__(self, n_features, options):
#         super().__init__()
#         self.hidden_dim = 64
#         self.output_dim = options['decoder_output_dim']
#         self.n_features = n_features

#         self.net = torch.nn.Sequential(
#             FullyConnectedLayer(n_features,
#                                 self.hidden_dim,
#                                 lr_multiplier=options['decoder_lr_mul']),
#             torch.nn.Softplus(),
#             FullyConnectedLayer(self.hidden_dim,
#                                 1 + options['decoder_output_dim'],
#                                 lr_multiplier=options['decoder_lr_mul']))

#     def forward(self, sampled_features, ray_directions):
#         # Aggregate features
#         sampled_features = sampled_features.mean(1)
#         x = sampled_features

#         N, M, C = x.shape
#         x = x.view(N * M, C)

#         x = self.net(x)
#         x = x.view(N, M, -1)
#         rgb = torch.sigmoid(x[..., 1:]) * (
#             1 + 2 * 0.001) - 0.001  # Uses sigmoid clamping from MipNeRF
#         sigma = x[..., 0:1]
#         return {'rgb': rgb, 'sigma': sigma}


@persistence.persistent_class
class OSGDecoder(torch.nn.Module):

    def __init__(self, n_features, options):
        super().__init__()
        self.hidden_dim = 64
        self.decoder_output_dim = options['decoder_output_dim']

        self.net = torch.nn.Sequential(
            FullyConnectedLayer(n_features,
                                self.hidden_dim,
                                lr_multiplier=options['decoder_lr_mul']),
            torch.nn.Softplus(),
            FullyConnectedLayer(self.hidden_dim,
                                1 + options['decoder_output_dim'],
                                lr_multiplier=options['decoder_lr_mul']))
        self.activation = options.get('decoder_activation', 'sigmoid')

    def forward(self, sampled_features, ray_directions):
        # Aggregate features
        sampled_features = sampled_features.mean(1)
        x = sampled_features

        N, M, C = x.shape
        x = x.view(N * M, C)

        x = self.net(x)
        x = x.view(N, M, -1)
        rgb = x[..., 1:]
        sigma = x[..., 0:1]
        if self.activation == "sigmoid":
            # Original EG3D
            rgb = torch.sigmoid(rgb) * (1 + 2 * 0.001) - 0.001
        elif self.activation == "lrelu":
            # StyleGAN2-style, use with toRGB
            rgb = torch.nn.functional.leaky_relu(rgb, 0.2,
                                                 inplace=True) * math.sqrt(2)
        return {'rgb': rgb, 'sigma': sigma}


class LRMOSGDecoder(nn.Module):
    """
    Triplane decoder that gives RGB and sigma values from sampled features.
    Using ReLU here instead of Softplus in the original implementation.
    
    Reference:
    EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112
    """
    def __init__(self, n_features: int,
                 hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU):
        super().__init__()
        self.decoder_output_dim = 3
        self.net = nn.Sequential(
            nn.Linear(3 * n_features, hidden_dim),
            activation(),
            *itertools.chain(*[[
                nn.Linear(hidden_dim, hidden_dim),
                activation(),
            ] for _ in range(num_layers - 2)]),
            nn.Linear(hidden_dim, 1 + self.decoder_output_dim),
        )
        # init all bias to zero
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.zeros_(m.bias)

    def forward(self, sampled_features, ray_directions):
        # Aggregate features by mean
        # sampled_features = sampled_features.mean(1)
        # Aggregate features by concatenation
        _N, n_planes, _M, _C = sampled_features.shape
        sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
        x = sampled_features

        N, M, C = x.shape
        x = x.contiguous().view(N*M, C)

        x = self.net(x)
        x = x.view(N, M, -1)
        rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001  # Uses sigmoid clamping from MipNeRF
        sigma = x[..., 0:1]

        return {'rgb': rgb, 'sigma': sigma}


class Triplane(torch.nn.Module):

    def __init__(
        self,
        c_dim=25,  # Conditioning label (C) dimensionality.
        img_resolution=128,  # Output resolution.
        img_channels=3,  # Number of output color channels.
        out_chans=96,
        triplane_size=224,
        rendering_kwargs={},
        decoder_in_chans=32,
        decoder_output_dim=32,
        sr_num_fp16_res=0,
        sr_kwargs={},
        create_triplane=False, # for overfitting single instance study
        bcg_synthesis_kwargs={},
        lrm_decoder=False,
    ):
        super().__init__()
        self.c_dim = c_dim
        self.img_resolution = img_resolution  # TODO
        self.img_channels = img_channels
        self.triplane_size = triplane_size

        self.decoder_in_chans = decoder_in_chans
        self.out_chans = out_chans

        self.renderer = ImportanceRenderer()

        if 'PatchRaySampler' in rendering_kwargs:
            self.ray_sampler = PatchRaySampler()
        else:
            self.ray_sampler = RaySampler()

        if lrm_decoder:
            self.decoder = LRMOSGDecoder(
                decoder_in_chans,)
        else:
            self.decoder = OSGDecoder(
                decoder_in_chans,
                {
                    'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1),
                    # 'decoder_output_dim': 32
                    'decoder_output_dim': decoder_output_dim
                })

        self.neural_rendering_resolution = img_resolution  # TODO
        # self.neural_rendering_resolution = 128  # TODO
        self.rendering_kwargs = rendering_kwargs
        self.create_triplane = create_triplane
        if create_triplane:
            self.planes = nn.Parameter(torch.randn(1, out_chans, 256, 256))

        if bool(sr_kwargs):  # check whether empty
            assert decoder_in_chans == decoder_output_dim, 'tradition'
            if rendering_kwargs['superresolution_module'] in [
                    'utils.torch_utils.components.PixelUnshuffleUpsample',
                    'utils.torch_utils.components.NearestConvSR',
                    'utils.torch_utils.components.NearestConvSR_Residual'
            ]:
                self.superresolution = dnnlib.util.construct_class_by_name(
                    class_name=rendering_kwargs['superresolution_module'],
                    # * for PixelUnshuffleUpsample
                    sr_ratio=2,  # 2x SR, 128 -> 256
                    output_dim=decoder_output_dim,
                    num_out_ch=3,
                )
            else:
                self.superresolution = dnnlib.util.construct_class_by_name(
                    class_name=rendering_kwargs['superresolution_module'],
                    # * for stylegan upsample
                    channels=decoder_output_dim,
                    img_resolution=img_resolution,
                    sr_num_fp16_res=sr_num_fp16_res,
                    sr_antialias=rendering_kwargs['sr_antialias'],
                    **sr_kwargs)
        else:
            self.superresolution = None

        self.bcg_synthesis = None

    # * pure reconstruction
    def forward(
            self,
            planes=None,
            # img,
            c=None,
            ws=None,
            ray_origins=None,
            ray_directions=None,
            z_bcg=None,
            neural_rendering_resolution=None,
            update_emas=False,
            cache_backbone=False,
            use_cached_backbone=False,
            return_meta=False,
            return_raw_only=False,
            sample_ray_only=False,
            fg_bbox=None,
            **synthesis_kwargs):

        cam2world_matrix = c[:, :16].reshape(-1, 4, 4)
        # cam2world_matrix = torch.eye(4, device=c.device).unsqueeze(0).repeat_interleave(c.shape[0], dim=0)
        # c[:, :16] = cam2world_matrix.view(-1, 16)
        intrinsics = c[:, 16:25].reshape(-1, 3, 3)

        if neural_rendering_resolution is None:
            neural_rendering_resolution = self.neural_rendering_resolution
        else:
            self.neural_rendering_resolution = neural_rendering_resolution

        if ray_directions is None:  # when output video
            H = W = self.neural_rendering_resolution
            # Create a batch of rays for volume rendering
            # ray_origins, ray_directions, ray_bboxes = self.ray_sampler(
            #     cam2world_matrix, intrinsics, neural_rendering_resolution)

            if sample_ray_only: # ! for sampling
                ray_origins, ray_directions, ray_bboxes = self.ray_sampler(
                    cam2world_matrix, intrinsics, 
                    self.rendering_kwargs.get( 'patch_rendering_resolution' ),
                    self.neural_rendering_resolution, fg_bbox)

                # for patch supervision
                ret_dict = {
                    'ray_origins': ray_origins,
                    'ray_directions': ray_directions,
                    'ray_bboxes': ray_bboxes,
                }

                return ret_dict

            else: # ! for rendering
                ray_origins, ray_directions, _ = self.ray_sampler(
                    cam2world_matrix, intrinsics, self.neural_rendering_resolution,
                    self.neural_rendering_resolution)

        else:
            assert ray_origins is not None
            H = W = int(ray_directions.shape[1]**
                        0.5)  # dynamically set patch resolution

        # ! match the batch size, if not returned
        if planes is None:
            assert self.planes is not None
            planes = self.planes.repeat_interleave(c.shape[0], dim=0)
        return_sampling_details_flag = self.rendering_kwargs.get(
            'return_sampling_details_flag', False)

        if return_sampling_details_flag:
            return_meta = True

        # Create triplanes by running StyleGAN backbone
        N, M, _ = ray_origins.shape

        # Reshape output into three 32-channel planes
        if planes.shape[1] == 3 * 2 * self.decoder_in_chans:
            # if isinstance(planes, tuple):
            #     N *= 2
            triplane_bg = True
            # planes = torch.cat(planes, 0) # inference in parallel
            # ray_origins = ray_origins.repeat(2,1,1)
            # ray_directions = ray_directions.repeat(2,1,1)

        else:
            triplane_bg = False

        # assert not triplane_bg

        # ! hard coded, will fix later
        # if planes.shape[1] == 3 * self.decoder_in_chans:
        # else:

        # planes = planes.view(len(planes), 3, self.decoder_in_chans,
        planes = planes.reshape(
            len(planes),
            3,
            -1,  # ! support background plane
            planes.shape[-2],
            planes.shape[-1])  # BS 96 256 256

        # Perform volume rendering
        rendering_details = self.renderer(planes,
                                          self.decoder,
                                          ray_origins,
                                          ray_directions,
                                          self.rendering_kwargs,
                                          return_meta=return_meta)

        feature_samples, depth_samples, weights_samples = (
            rendering_details[k]
            for k in ['feature_samples', 'depth_samples', 'weights_samples'])

        if return_sampling_details_flag:
            shape_synthesized = rendering_details['shape_synthesized']
        else:
            shape_synthesized = None

        # Reshape into 'raw' neural-rendered image
        feature_image = feature_samples.permute(0, 2, 1).reshape(
            N, feature_samples.shape[-1], H,
            W).contiguous()  # B 32 H W, in [-1,1]
        depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
        weights_samples = weights_samples.permute(0, 2, 1).reshape(N, 1, H, W)

        # Generate Background
        # if self.bcg_synthesis:

        #     # bg composition
        #     # if self.decoder.activation == "sigmoid":
        #     #     feature_image = feature_image * 2 - 1 # Scale to (-1, 1), taken from ray marcher

        #     assert isinstance(
        #         z_bcg, torch.Tensor
        #     )  # 512 latents after reparmaterization, reuse the name
        #     # ws_bcg = ws[:,:self.bcg_synthesis.num_ws] if ws_bcg is None else ws_bcg[:,:self.bcg_synthesis.num_ws]

        #     with torch.autocast(device_type='cuda',
        #                         dtype=torch.float16,
        #                         enabled=False):

        #         ws_bcg = self.bcg_mapping(z_bcg, c=None)  # reuse the name
        #         if ws_bcg.size(1) < self.bcg_synthesis.num_ws:
        #             ws_bcg = torch.cat([
        #                 ws_bcg, ws_bcg[:, -1:].repeat(
        #                     1, self.bcg_synthesis.num_ws - ws_bcg.size(1), 1)
        #             ], 1)

        #         bcg_image = self.bcg_synthesis(ws_bcg,
        #                                        update_emas=update_emas,
        #                                        **synthesis_kwargs)
        #     bcg_image = torch.nn.functional.interpolate(
        #         bcg_image,
        #         size=feature_image.shape[2:],
        #         mode='bilinear',
        #         align_corners=False,
        #         antialias=self.rendering_kwargs['sr_antialias'])
        #     feature_image = feature_image + (1 - weights_samples) * bcg_image

        #     # Generate Raw image
        #     assert self.torgb
        #     rgb_image = self.torgb(feature_image,
        #                            ws_bcg[:, -1],
        #                            fused_modconv=False)
        #     rgb_image = rgb_image.to(dtype=torch.float32,
        #                              memory_format=torch.contiguous_format)
        #     # st()
        # else:

        mask_image = weights_samples * (1 + 2 * 0.001) - 0.001
        if triplane_bg:
            # true_bs = N // 2
            # weights_samples = weights_samples[:true_bs]
            # mask_image = mask_image[:true_bs]
            # feature_image = feature_image[:true_bs] * mask_image + feature_image[true_bs:] * (1-mask_image) # the first is foreground
            # depth_image = depth_image[:true_bs]

            # ! composited colors
            # rgb_final = (
            #     1 - fg_ret_dict['weights']
            # ) * bg_ret_dict['rgb_final'] + fg_ret_dict[
            #     'feature_samples']  # https://github.com/SizheAn/PanoHead/blob/17ad915941c7e2703d5aa3eb5ff12eac47c90e53/training/triplane.py#L127C45-L127C64

            # ret_dict.update({
            #     'feature_samples': rgb_final,
            # })
            # st()
            feature_image = (1 - mask_image) * rendering_details[
                'bg_ret_dict']['rgb_final'] + feature_image

        rgb_image = feature_image[:, :3]

        # # Run superresolution to get final image
        if self.superresolution is not None and not return_raw_only:
            # assert ws is not None, 'feed in [cls] token here for SR module'

            if ws is not None and ws.ndim == 2:
                ws = ws.unsqueeze(
                    1)[:, -1:, :]  # follow stylegan tradition, B, N, C

            sr_image = self.superresolution(
                rgb=rgb_image,
                x=feature_image,
                base_x=rgb_image,
                ws=ws,  # only use the last layer
                noise_mode=self.
                rendering_kwargs['superresolution_noise_mode'],  # none
                **{
                    k: synthesis_kwargs[k]
                    for k in synthesis_kwargs.keys() if k != 'noise_mode'
                })
        else:
            # sr_image = rgb_image
            sr_image = None

        if shape_synthesized is not None:
            shape_synthesized.update({
                'image_depth': depth_image,
            })  # for 3D loss easy computation, wrap all 3D in a single dict

        ret_dict = {
            'feature_image': feature_image,
            # 'image_raw': feature_image[:, :3],
            'image_raw': rgb_image,
            'image_depth': depth_image,
            'weights_samples': weights_samples,
            # 'silhouette': mask_image,
            # 'silhouette_normalized_3channel': (mask_image*2-1).repeat_interleave(3,1), # N 3 H W
            'shape_synthesized': shape_synthesized,
            "image_mask": mask_image,
        }

        if sr_image is not None:
            ret_dict.update({
                'image_sr': sr_image,
            })

        if return_meta:
            ret_dict.update({
                'feature_volume':
                rendering_details['feature_volume'],
                'all_coords':
                rendering_details['all_coords'],
                'weights':
                rendering_details['weights'],
            })

        return ret_dict


class Triplane_fg_bg_plane(Triplane):
    # a separate background plane

    def __init__(self,
                 c_dim=25,
                 img_resolution=128,
                 img_channels=3,
                 out_chans=96,
                 triplane_size=224,
                 rendering_kwargs={},
                 decoder_in_chans=32,
                 decoder_output_dim=32,
                 sr_num_fp16_res=0,
                 sr_kwargs={},
                 bcg_synthesis_kwargs={}):
        super().__init__(c_dim, img_resolution, img_channels, out_chans,
                         triplane_size, rendering_kwargs, decoder_in_chans,
                         decoder_output_dim, sr_num_fp16_res, sr_kwargs,
                         bcg_synthesis_kwargs)

        self.bcg_decoder = Decoder(
            ch=64,  # half channel size
            out_ch=32,
            # ch_mult=(1, 2, 4),
            ch_mult=(1, 2),  # use res=64 for now
            num_res_blocks=2,
            dropout=0.0,
            attn_resolutions=(),
            z_channels=4,
            resolution=64,
            in_channels=3,
        )

    # * pure reconstruction
    def forward(
            self,
            planes,
            bg_plane,
            # img,
            c,
            ws=None,
            z_bcg=None,
            neural_rendering_resolution=None,
            update_emas=False,
            cache_backbone=False,
            use_cached_backbone=False,
            return_meta=False,
            return_raw_only=False,
            **synthesis_kwargs):

        # ! match the batch size
        if planes is None:
            assert self.planes is not None
            planes = self.planes.repeat_interleave(c.shape[0], dim=0)
        return_sampling_details_flag = self.rendering_kwargs.get(
            'return_sampling_details_flag', False)

        if return_sampling_details_flag:
            return_meta = True

        cam2world_matrix = c[:, :16].reshape(-1, 4, 4)
        # cam2world_matrix = torch.eye(4, device=c.device).unsqueeze(0).repeat_interleave(c.shape[0], dim=0)
        # c[:, :16] = cam2world_matrix.view(-1, 16)
        intrinsics = c[:, 16:25].reshape(-1, 3, 3)

        if neural_rendering_resolution is None:
            neural_rendering_resolution = self.neural_rendering_resolution
        else:
            self.neural_rendering_resolution = neural_rendering_resolution

        H = W = self.neural_rendering_resolution
        # Create a batch of rays for volume rendering
        ray_origins, ray_directions, _ = self.ray_sampler(
            cam2world_matrix, intrinsics, neural_rendering_resolution)

        # Create triplanes by running StyleGAN backbone
        N, M, _ = ray_origins.shape

        # # Reshape output into three 32-channel planes
        # if planes.shape[1] == 3 * 2 * self.decoder_in_chans:
        #     # if isinstance(planes, tuple):
        #     #     N *= 2
        #     triplane_bg = True
        #     # planes = torch.cat(planes, 0) # inference in parallel
        #     # ray_origins = ray_origins.repeat(2,1,1)
        #     # ray_directions = ray_directions.repeat(2,1,1)

        # else:
        #     triplane_bg = False

        # assert not triplane_bg

        planes = planes.view(
            len(planes),
            3,
            -1,  # ! support background plane
            planes.shape[-2],
            planes.shape[-1])  # BS 96 256 256

        # Perform volume rendering
        rendering_details = self.renderer(planes,
                                          self.decoder,
                                          ray_origins,
                                          ray_directions,
                                          self.rendering_kwargs,
                                          return_meta=return_meta)

        feature_samples, depth_samples, weights_samples = (
            rendering_details[k]
            for k in ['feature_samples', 'depth_samples', 'weights_samples'])

        if return_sampling_details_flag:
            shape_synthesized = rendering_details['shape_synthesized']
        else:
            shape_synthesized = None

        # Reshape into 'raw' neural-rendered image
        feature_image = feature_samples.permute(0, 2, 1).reshape(
            N, feature_samples.shape[-1], H,
            W).contiguous()  # B 32 H W, in [-1,1]
        depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
        weights_samples = weights_samples.permute(0, 2, 1).reshape(N, 1, H, W)

        bcg_image = self.bcg_decoder(bg_plane)
        bcg_image = torch.nn.functional.interpolate(
            bcg_image,
            size=feature_image.shape[2:],
            mode='bilinear',
            align_corners=False,
            antialias=self.rendering_kwargs['sr_antialias'])

        mask_image = weights_samples * (1 + 2 * 0.001) - 0.001

        # ! fuse fg/bg model output
        feature_image = feature_image + (1 - weights_samples) * bcg_image

        rgb_image = feature_image[:, :3]

        # # Run superresolution to get final image
        if self.superresolution is not None and not return_raw_only:
            # assert ws is not None, 'feed in [cls] token here for SR module'

            if ws is not None and ws.ndim == 2:
                ws = ws.unsqueeze(
                    1)[:, -1:, :]  # follow stylegan tradition, B, N, C

            sr_image = self.superresolution(
                rgb=rgb_image,
                x=feature_image,
                base_x=rgb_image,
                ws=ws,  # only use the last layer
                noise_mode=self.
                rendering_kwargs['superresolution_noise_mode'],  # none
                **{
                    k: synthesis_kwargs[k]
                    for k in synthesis_kwargs.keys() if k != 'noise_mode'
                })
        else:
            # sr_image = rgb_image
            sr_image = None

        if shape_synthesized is not None:
            shape_synthesized.update({
                'image_depth': depth_image,
            })  # for 3D loss easy computation, wrap all 3D in a single dict

        ret_dict = {
            'feature_image': feature_image,
            # 'image_raw': feature_image[:, :3],
            'image_raw': rgb_image,
            'image_depth': depth_image,
            'weights_samples': weights_samples,
            # 'silhouette': mask_image,
            # 'silhouette_normalized_3channel': (mask_image*2-1).repeat_interleave(3,1), # N 3 H W
            'shape_synthesized': shape_synthesized,
            "image_mask": mask_image,
        }

        if sr_image is not None:
            ret_dict.update({
                'image_sr': sr_image,
            })

        if return_meta:
            ret_dict.update({
                'feature_volume':
                rendering_details['feature_volume'],
                'all_coords':
                rendering_details['all_coords'],
                'weights':
                rendering_details['weights'],
            })

        return ret_dict