File size: 12,396 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for LSGM. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------

import torch
import torch.nn.functional as F
from torch.distributions.bernoulli import Bernoulli as Bern
import numpy as np
from pdb import set_trace as st
# from util import utils
from .continuous_diffusion_utils import view4D

@torch.jit.script
def sample_normal_jit(mu, sigma):
    rho = mu.mul(0).normal_()
    z = rho.mul_(sigma).add_(mu)
    return z, rho


@torch.jit.script
def log_p_standard_normal(samples):
    log_p = - 0.5 * torch.square(samples) - 0.9189385332  # 0.5 * np.log(2 * np.pi)
    return log_p


def log_p_var_normal(samples, var):
    log_p = - 0.5 * torch.square(samples) / var - 0.5 * np.log(var) - 0.9189385332  # 0.5 * np.log(2 * np.pi)
    return log_p


def one_hot(indices, depth, dim):
    indices = indices.unsqueeze(dim)
    size = list(indices.size())
    size[dim] = depth
    y_onehot = torch.zeros(size).cuda()
    y_onehot.zero_()
    y_onehot.scatter_(dim, indices, 1)

    return y_onehot

# TODO: merge this with the next class
class PixelNormal(object):
    def __init__(self, param, fixed_log_scales=None):
        size = param.size()
        C = size[1]
        if fixed_log_scales is None:
            self.num_c = C // 2
            self.means = param[:, :self.num_c, :, :]                                    # B, 1 or 3, H, W
            self.log_scales = torch.clamp(param[:, self.num_c:, :, :], min=-7.0)        # B, 1 or 3, H, W
            raise NotImplementedError
        else:
            self.num_c = C
            self.means = param                                                          # B, 1 or 3, H, W
            self.log_scales = view4D(fixed_log_scales, size)                      # B, 1 or 3, H, W

    def get_params(self):
        return self.means, self.log_scales, self.num_c

    def log_prob(self, samples):
        B, C, H, W = samples.size()
        assert C == self.num_c

        log_probs = -0.5 * torch.square(self.means - samples) * torch.exp(-2.0 * self.log_scales) - self.log_scales - 0.9189385332  # -0.5*log(2*pi)
        return log_probs

    def sample(self, t=1.):
        z, rho = sample_normal_jit(self.means, torch.exp(self.log_scales)*t)  # B, 3, H, W
        return z

    def log_prob_discrete(self, samples):
        """
        Calculates discrete pixel probabilities.
        """
        # samples should be in [-1, 1] already
        B, C, H, W = samples.size()
        assert C == self.num_c

        centered = samples - self.means
        inv_stdv = torch.exp(- self.log_scales)
        plus_in = inv_stdv * (centered + 1. / 255.)
        cdf_plus = torch.distributions.Normal(0, 1).cdf(plus_in)
        min_in = inv_stdv * (centered - 1. / 255.)
        cdf_min = torch.distributions.Normal(0, 1).cdf(min_in)
        log_cdf_plus = torch.log(torch.clamp(cdf_plus, min=1e-12))
        log_one_minus_cdf_min = torch.log(torch.clamp(1. - cdf_min, min=1e-12))
        cdf_delta = cdf_plus - cdf_min
        log_probs = torch.where(samples < -0.999, log_cdf_plus, torch.where(samples > 0.999, log_one_minus_cdf_min,
            torch.log(torch.clamp(cdf_delta, min=1e-12))))

        assert log_probs.size() == samples.size()
        return log_probs

    def mean(self):
        return self.means


class Normal:
    def __init__(self, mu, log_sigma):
        self.mu = mu
        self.log_sigma = log_sigma
        self.sigma = torch.exp(log_sigma)

    def sample(self, t=1.):
        return sample_normal_jit(self.mu, self.sigma * t)

    def sample_given_rho(self, rho):
        return rho * self.sigma + self.mu

    def log_p(self, samples):
        normalized_samples = (samples - self.mu) / self.sigma
        log_p = - 0.5 * normalized_samples * normalized_samples - 0.5 * np.log(2 * np.pi) - self.log_sigma
        return log_p

    def kl(self, normal_dist):
        term1 = (self.mu - normal_dist.mu) / normal_dist.sigma
        term2 = self.sigma / normal_dist.sigma

        return 0.5 * (term1 * term1 + term2 * term2) - 0.5 - torch.log(self.log_sigma) + normal_dist.log_sigma

    def mean(self):
        return self.mu


class Bernoulli:
    def __init__(self, logits):
        self.dist = Bern(logits=logits)

    def log_p(self, samples):
        # convert samples to {0, 1}
        samples = (samples + 1.) / 2
        return self.dist.log_prob(samples)

    def mean(self):
        # map the mean to [-1, 1]
        return 2 * self.dist.mean - 1.

class DiscLogistic:
    def __init__(self, param):
        B, C, H, W = param.size()
        self.num_c = C // 2
        self.means = param[:, :self.num_c, :, :]                              # B, 3, H, W
        self.log_scales = torch.clamp(param[:, self.num_c:, :, :], min=-7.0)  # B, 3, H, W

    def log_p(self, samples):
        assert torch.max(samples) <= 1.0 and torch.min(samples) >= -1.0

        B, C, H, W = samples.size()
        assert C == self.num_c

        centered = samples - self.means                                         # B, 3, H, W
        inv_stdv = torch.exp(- self.log_scales)
        plus_in = inv_stdv * (centered + 1. / 255.)
        cdf_plus = torch.sigmoid(plus_in)
        min_in = inv_stdv * (centered - 1. / 255.)
        cdf_min = torch.sigmoid(min_in)
        log_cdf_plus = plus_in - F.softplus(plus_in)
        log_one_minus_cdf_min = - F.softplus(min_in)
        cdf_delta = cdf_plus - cdf_min
        mid_in = inv_stdv * centered
        log_pdf_mid = mid_in - self.log_scales - 2. * F.softplus(mid_in)

        log_prob_mid_safe = torch.where(cdf_delta > 1e-5,
                                        torch.log(torch.clamp(cdf_delta, min=1e-10)),
                                        log_pdf_mid - np.log(127.5))

        log_probs = torch.where(samples < -0.999, log_cdf_plus, torch.where(samples > 0.999, log_one_minus_cdf_min,
                                                                            log_prob_mid_safe))   # B, 3, H, W

        return log_probs

    def sample(self):
        u = torch.Tensor(self.means.size()).uniform_(1e-5, 1. - 1e-5).cuda()                        # B, 3, H, W
        x = self.means + torch.exp(self.log_scales) * (torch.log(u) - torch.log(1. - u))            # B, 3, H, W
        x = torch.clamp(x, -1, 1.)
        return x

    def mean(self):
        return self.means


class DiscMixLogistic:
    def __init__(self, param, num_mix=10, num_bits=8):
        B, C, H, W = param.size()
        self.num_mix = num_mix
        self.logit_probs = param[:, :num_mix, :, :]                                   # B, M, H, W
        l = param[:, num_mix:, :, :].view(B, 3, 3 * num_mix, H, W)                    # B, 3, 3 * M, H, W
        self.means = l[:, :, :num_mix, :, :]                                          # B, 3, M, H, W
        self.log_scales = torch.clamp(l[:, :, num_mix:2 * num_mix, :, :], min=-7.0)   # B, 3, M, H, W
        self.coeffs = torch.tanh(l[:, :, 2 * num_mix:3 * num_mix, :, :])              # B, 3, M, H, W
        self.max_val = 2. ** num_bits - 1

    def log_p(self, samples):
        assert torch.max(samples) <= 1.0 and torch.min(samples) >= -1.0

        B, C, H, W = samples.size()
        assert C == 3, 'only RGB images are considered.'

        samples = samples.unsqueeze(4)                                                  # B, 3, H , W
        samples = samples.expand(-1, -1, -1, -1, self.num_mix).permute(0, 1, 4, 2, 3)   # B, 3, M, H, W
        mean1 = self.means[:, 0, :, :, :]                                               # B, M, H, W
        mean2 = self.means[:, 1, :, :, :] + \
                self.coeffs[:, 0, :, :, :] * samples[:, 0, :, :, :]                     # B, M, H, W
        mean3 = self.means[:, 2, :, :, :] + \
                self.coeffs[:, 1, :, :, :] * samples[:, 0, :, :, :] + \
                self.coeffs[:, 2, :, :, :] * samples[:, 1, :, :, :]                     # B, M, H, W

        mean1 = mean1.unsqueeze(1)                          # B, 1, M, H, W
        mean2 = mean2.unsqueeze(1)                          # B, 1, M, H, W
        mean3 = mean3.unsqueeze(1)                          # B, 1, M, H, W
        means = torch.cat([mean1, mean2, mean3], dim=1)     # B, 3, M, H, W
        centered = samples - means                          # B, 3, M, H, W

        inv_stdv = torch.exp(- self.log_scales)
        plus_in = inv_stdv * (centered + 1. / self.max_val)
        cdf_plus = torch.sigmoid(plus_in)
        min_in = inv_stdv * (centered - 1. / self.max_val)
        cdf_min = torch.sigmoid(min_in)
        log_cdf_plus = plus_in - F.softplus(plus_in)
        log_one_minus_cdf_min = - F.softplus(min_in)
        cdf_delta = cdf_plus - cdf_min
        mid_in = inv_stdv * centered
        log_pdf_mid = mid_in - self.log_scales - 2. * F.softplus(mid_in)

        log_prob_mid_safe = torch.where(cdf_delta > 1e-5,
                                        torch.log(torch.clamp(cdf_delta, min=1e-10)),
                                        log_pdf_mid - np.log(self.max_val / 2))

        log_probs = torch.where(samples < -0.999, log_cdf_plus, torch.where(samples > 0.999, log_one_minus_cdf_min,
                                                                            log_prob_mid_safe))   # B, 3, M, H, W

        log_probs = torch.sum(log_probs, 1) + F.log_softmax(self.logit_probs, dim=1)         # B, M, H, W
        return torch.logsumexp(log_probs, dim=1)                                             # B, H, W

    def sample(self, t=1.):
        gumbel = -torch.log(- torch.log(torch.Tensor(self.logit_probs.size()).uniform_(1e-5, 1. - 1e-5).cuda()))  # B, M, H, W
        sel = one_hot(torch.argmax(self.logit_probs / t + gumbel, 1), self.num_mix, dim=1)          # B, M, H, W
        sel = sel.unsqueeze(1)                                                                 # B, 1, M, H, W

        # select logistic parameters
        means = torch.sum(self.means * sel, dim=2)                                             # B, 3, H, W
        log_scales = torch.sum(self.log_scales * sel, dim=2)                                   # B, 3, H, W
        coeffs = torch.sum(self.coeffs * sel, dim=2)                                           # B, 3, H, W

        # cells from logistic & clip to interval
        # we don't actually round to the nearest 8bit value when sampling
        u = torch.Tensor(means.size()).uniform_(1e-5, 1. - 1e-5).cuda()                        # B, 3, H, W
        x = means + torch.exp(log_scales) * t * (torch.log(u) - torch.log(1. - u))             # B, 3, H, W

        x0 = torch.clamp(x[:, 0, :, :], -1, 1.)                                                # B, H, W
        x1 = torch.clamp(x[:, 1, :, :] + coeffs[:, 0, :, :] * x0, -1, 1)                       # B, H, W
        x2 = torch.clamp(x[:, 2, :, :] + coeffs[:, 1, :, :] * x0 + coeffs[:, 2, :, :] * x1, -1, 1)  # B, H, W

        x0 = x0.unsqueeze(1)
        x1 = x1.unsqueeze(1)
        x2 = x2.unsqueeze(1)

        x = torch.cat([x0, x1, x2], 1)
        return x

    def mean(self):
        sel = torch.softmax(self.logit_probs, dim=1)                                           # B, M, H, W
        sel = sel.unsqueeze(1)                                                                 # B, 1, M, H, W

        # select logistic parameters
        means = torch.sum(self.means * sel, dim=2)                                             # B, 3, H, W
        coeffs = torch.sum(self.coeffs * sel, dim=2)                                           # B, 3, H, W

        # we don't sample from logistic components, because of the linear dependencies, we use mean
        x = means                                                                              # B, 3, H, W
        x0 = torch.clamp(x[:, 0, :, :], -1, 1.)                                                # B, H, W
        x1 = torch.clamp(x[:, 1, :, :] + coeffs[:, 0, :, :] * x0, -1, 1)                       # B, H, W
        x2 = torch.clamp(x[:, 2, :, :] + coeffs[:, 1, :, :] * x0 + coeffs[:, 2, :, :] * x1, -1, 1)  # B, H, W

        x0 = x0.unsqueeze(1)
        x1 = x1.unsqueeze(1)
        x2 = x2.unsqueeze(1)

        x = torch.cat([x0, x1, x2], 1)
        return x