Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from contextlib import contextmanager | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import pytorch_lightning as pl | |
import torch | |
from omegaconf import ListConfig, OmegaConf | |
from safetensors.torch import load_file as load_safetensors | |
from torch.optim.lr_scheduler import LambdaLR | |
from ..modules import UNCONDITIONAL_CONFIG | |
from ..modules.autoencoding.temporal_ae import VideoDecoder | |
from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER | |
from ..modules.ema import LitEma | |
from ..util import (default, disabled_train, get_obj_from_str, | |
instantiate_from_config, log_txt_as_img) | |
class DiffusionEngine(pl.LightningModule): | |
def __init__( | |
self, | |
network_config, | |
denoiser_config, | |
first_stage_config, | |
conditioner_config: Union[None, Dict, ListConfig, OmegaConf] = None, | |
sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None, | |
optimizer_config: Union[None, Dict, ListConfig, OmegaConf] = None, | |
scheduler_config: Union[None, Dict, ListConfig, OmegaConf] = None, | |
loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None, | |
network_wrapper: Union[None, str] = None, | |
ckpt_path: Union[None, str] = None, | |
use_ema: bool = False, | |
ema_decay_rate: float = 0.9999, | |
scale_factor: float = 1.0, | |
disable_first_stage_autocast=False, | |
input_key: str = "jpg", | |
log_keys: Union[List, None] = None, | |
no_cond_log: bool = False, | |
compile_model: bool = False, | |
en_and_decode_n_samples_a_time: Optional[int] = None, | |
): | |
super().__init__() | |
self.log_keys = log_keys | |
self.input_key = input_key | |
self.optimizer_config = default( | |
optimizer_config, {"target": "torch.optim.AdamW"} | |
) | |
model = instantiate_from_config(network_config) | |
self.model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))( | |
model, compile_model=compile_model | |
) | |
self.denoiser = instantiate_from_config(denoiser_config) | |
self.sampler = ( | |
instantiate_from_config(sampler_config) | |
if sampler_config is not None | |
else None | |
) | |
self.conditioner = instantiate_from_config( | |
default(conditioner_config, UNCONDITIONAL_CONFIG) | |
) | |
self.scheduler_config = scheduler_config | |
self._init_first_stage(first_stage_config) | |
self.loss_fn = ( | |
instantiate_from_config(loss_fn_config) | |
if loss_fn_config is not None | |
else None | |
) | |
self.use_ema = use_ema | |
if self.use_ema: | |
self.model_ema = LitEma(self.model, decay=ema_decay_rate) | |
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
self.scale_factor = scale_factor | |
self.disable_first_stage_autocast = disable_first_stage_autocast | |
self.no_cond_log = no_cond_log | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path) | |
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time | |
def init_from_ckpt( | |
self, | |
path: str, | |
) -> None: | |
if path.endswith("ckpt"): | |
sd = torch.load(path, map_location="cpu")["state_dict"] | |
elif path.endswith("safetensors"): | |
sd = load_safetensors(path) | |
else: | |
raise NotImplementedError | |
missing, unexpected = self.load_state_dict(sd, strict=False) | |
print( | |
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" | |
) | |
if len(missing) > 0: | |
print(f"Missing Keys: {missing}") | |
if len(unexpected) > 0: | |
print(f"Unexpected Keys: {unexpected}") | |
def _init_first_stage(self, config): | |
model = instantiate_from_config(config).eval() | |
model.train = disabled_train | |
for param in model.parameters(): | |
param.requires_grad = False | |
self.first_stage_model = model | |
def get_input(self, batch): | |
# assuming unified data format, dataloader returns a dict. | |
# image tensors should be scaled to -1 ... 1 and in bchw format | |
return batch[self.input_key] | |
def decode_first_stage(self, z): | |
z = 1.0 / self.scale_factor * z | |
n_samples = default(self.en_and_decode_n_samples_a_time, z.shape[0]) | |
n_rounds = math.ceil(z.shape[0] / n_samples) | |
all_out = [] | |
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast): | |
for n in range(n_rounds): | |
if isinstance(self.first_stage_model.decoder, VideoDecoder): | |
kwargs = {"timesteps": len(z[n * n_samples : (n + 1) * n_samples])} | |
else: | |
kwargs = {} | |
out = self.first_stage_model.decode( | |
z[n * n_samples : (n + 1) * n_samples], **kwargs | |
) | |
all_out.append(out) | |
out = torch.cat(all_out, dim=0) | |
return out | |
def encode_first_stage(self, x): | |
n_samples = default(self.en_and_decode_n_samples_a_time, x.shape[0]) | |
n_rounds = math.ceil(x.shape[0] / n_samples) | |
all_out = [] | |
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast): | |
for n in range(n_rounds): | |
out = self.first_stage_model.encode( | |
x[n * n_samples : (n + 1) * n_samples] | |
) | |
all_out.append(out) | |
z = torch.cat(all_out, dim=0) | |
z = self.scale_factor * z | |
return z | |
def forward(self, x, batch): | |
loss = self.loss_fn(self.model, self.denoiser, self.conditioner, x, batch) | |
loss_mean = loss.mean() | |
loss_dict = {"loss": loss_mean} | |
return loss_mean, loss_dict | |
def shared_step(self, batch: Dict) -> Any: | |
x = self.get_input(batch) | |
x = self.encode_first_stage(x) | |
batch["global_step"] = self.global_step | |
loss, loss_dict = self(x, batch) | |
return loss, loss_dict | |
def training_step(self, batch, batch_idx): | |
loss, loss_dict = self.shared_step(batch) | |
self.log_dict( | |
loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=False | |
) | |
self.log( | |
"global_step", | |
self.global_step, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=False, | |
) | |
if self.scheduler_config is not None: | |
lr = self.optimizers().param_groups[0]["lr"] | |
self.log( | |
"lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False | |
) | |
return loss | |
def on_train_start(self, *args, **kwargs): | |
if self.sampler is None or self.loss_fn is None: | |
raise ValueError("Sampler and loss function need to be set for training.") | |
def on_train_batch_end(self, *args, **kwargs): | |
if self.use_ema: | |
self.model_ema(self.model) | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.model.parameters()) | |
self.model_ema.copy_to(self.model) | |
if context is not None: | |
print(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.model.parameters()) | |
if context is not None: | |
print(f"{context}: Restored training weights") | |
def instantiate_optimizer_from_config(self, params, lr, cfg): | |
return get_obj_from_str(cfg["target"])( | |
params, lr=lr, **cfg.get("params", dict()) | |
) | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.model.parameters()) | |
for embedder in self.conditioner.embedders: | |
if embedder.is_trainable: | |
params = params + list(embedder.parameters()) | |
opt = self.instantiate_optimizer_from_config(params, lr, self.optimizer_config) | |
if self.scheduler_config is not None: | |
scheduler = instantiate_from_config(self.scheduler_config) | |
print("Setting up LambdaLR scheduler...") | |
scheduler = [ | |
{ | |
"scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule), | |
"interval": "step", | |
"frequency": 1, | |
} | |
] | |
return [opt], scheduler | |
return opt | |
def sample( | |
self, | |
cond: Dict, | |
uc: Union[Dict, None] = None, | |
batch_size: int = 16, | |
shape: Union[None, Tuple, List] = None, | |
**kwargs, | |
): | |
randn = torch.randn(batch_size, *shape).to(self.device) | |
denoiser = lambda input, sigma, c: self.denoiser( | |
self.model, input, sigma, c, **kwargs | |
) | |
samples = self.sampler(denoiser, randn, cond, uc=uc) | |
return samples | |
def log_conditionings(self, batch: Dict, n: int) -> Dict: | |
""" | |
Defines heuristics to log different conditionings. | |
These can be lists of strings (text-to-image), tensors, ints, ... | |
""" | |
image_h, image_w = batch[self.input_key].shape[2:] | |
log = dict() | |
for embedder in self.conditioner.embedders: | |
if ( | |
(self.log_keys is None) or (embedder.input_key in self.log_keys) | |
) and not self.no_cond_log: | |
x = batch[embedder.input_key][:n] | |
if isinstance(x, torch.Tensor): | |
if x.dim() == 1: | |
# class-conditional, convert integer to string | |
x = [str(x[i].item()) for i in range(x.shape[0])] | |
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 4) | |
elif x.dim() == 2: | |
# size and crop cond and the like | |
x = [ | |
"x".join([str(xx) for xx in x[i].tolist()]) | |
for i in range(x.shape[0]) | |
] | |
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20) | |
else: | |
raise NotImplementedError() | |
elif isinstance(x, (List, ListConfig)): | |
if isinstance(x[0], str): | |
# strings | |
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20) | |
else: | |
raise NotImplementedError() | |
else: | |
raise NotImplementedError() | |
log[embedder.input_key] = xc | |
return log | |
def log_images( | |
self, | |
batch: Dict, | |
N: int = 8, | |
sample: bool = True, | |
ucg_keys: List[str] = None, | |
**kwargs, | |
) -> Dict: | |
conditioner_input_keys = [e.input_key for e in self.conditioner.embedders] | |
if ucg_keys: | |
assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), ( | |
"Each defined ucg key for sampling must be in the provided conditioner input keys," | |
f"but we have {ucg_keys} vs. {conditioner_input_keys}" | |
) | |
else: | |
ucg_keys = conditioner_input_keys | |
log = dict() | |
x = self.get_input(batch) | |
c, uc = self.conditioner.get_unconditional_conditioning( | |
batch, | |
force_uc_zero_embeddings=ucg_keys | |
if len(self.conditioner.embedders) > 0 | |
else [], | |
) | |
sampling_kwargs = {} | |
N = min(x.shape[0], N) | |
x = x.to(self.device)[:N] | |
log["inputs"] = x | |
z = self.encode_first_stage(x) | |
log["reconstructions"] = self.decode_first_stage(z) | |
log.update(self.log_conditionings(batch, N)) | |
for k in c: | |
if isinstance(c[k], torch.Tensor): | |
c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc)) | |
if sample: | |
with self.ema_scope("Plotting"): | |
samples = self.sample( | |
c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs | |
) | |
samples = self.decode_first_stage(samples) | |
log["samples"] = samples | |
return log | |