Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import inspect | |
from pdb import set_trace as st | |
from cldm.cldm import ControlledUnetModel, ControlNet | |
from . import gaussian_diffusion as gd | |
from .respace import SpacedDiffusion, space_timesteps | |
# from .unet_old import SuperResModel, UNetModel, EncoderUNetModel # , UNetModelWithHint | |
from .unet import SuperResModel, UNetModel, EncoderUNetModel # , UNetModelWithHint | |
import torch as th | |
# from dit.dit_models_xformers import DiT_models | |
# from dit.dit_models_xformers import TextCondDiTBlock | |
from dit.dit_models_xformers import TextCondDiTBlock, ImageCondDiTBlock, FinalLayer | |
from dit.dit_trilatent import DiT_models as DiT_models_t23d | |
from dit.dit_i23d import DiT_models as DiT_models_i23d | |
if th.cuda.is_available(): | |
from xformers.triton import FusedLayerNorm as LayerNorm | |
NUM_CLASSES = 1000 | |
def diffusion_defaults(): | |
""" | |
Defaults for image and classifier training. | |
""" | |
return dict( | |
learn_sigma=False, | |
diffusion_steps=1000, | |
noise_schedule="linear", | |
standarization_xt=False, | |
timestep_respacing="", | |
use_kl=False, | |
predict_xstart=False, | |
predict_v=False, | |
rescale_timesteps=False, | |
rescale_learned_sigmas=False, | |
mixed_prediction=False, # ! to assign later | |
) | |
def classifier_defaults(): | |
""" | |
Defaults for classifier models. | |
""" | |
return dict( | |
image_size=64, | |
classifier_use_fp16=False, | |
classifier_width=128, | |
classifier_depth=2, | |
classifier_attention_resolutions="32,16,8", # 16 | |
classifier_use_scale_shift_norm=True, # False | |
classifier_resblock_updown=True, # False | |
classifier_pool="attention", | |
) | |
def control_net_defaults(): | |
res = dict( | |
only_mid_control=False, # TODO | |
control_key='img', | |
normalize_clip_encoding=False, # zero-shot text inference | |
scale_clip_encoding=1.0, | |
cfg_dropout_prob=0.0, # dropout condition for CFG training | |
# cond_key='caption', | |
) | |
return res | |
def continuous_diffusion_defaults(): | |
# NVlabs/LSGM/train_vada.py | |
res = dict( | |
sde_time_eps=1e-2, | |
sde_beta_start=0.1, | |
sde_beta_end=20.0, | |
sde_sde_type='vpsde', | |
sde_sigma2_0=0.0, # ? | |
iw_sample_p='drop_sigma2t_iw', | |
iw_sample_q='ll_iw', | |
iw_subvp_like_vp_sde=False, | |
train_vae=True, | |
pred_type='eps', # [x0, eps] | |
# joint_train=False, | |
p_rendering_loss=False, | |
unfix_logit=False, | |
loss_type='eps', | |
loss_weight='simple', # snr snr_sqrt sigmoid_snr | |
# train_vae_denoise_rendering=False, | |
diffusion_ce_anneal=True, | |
enable_mixing_normal=True, | |
) | |
return res | |
def model_and_diffusion_defaults(): | |
""" | |
Defaults for image training. | |
""" | |
res = dict( | |
# image_size=64, | |
diffusion_input_size=224, | |
num_channels=128, | |
num_res_blocks=2, | |
num_heads=4, | |
num_heads_upsample=-1, | |
num_head_channels=-1, | |
attention_resolutions="16,8", | |
channel_mult="", | |
dropout=0.0, | |
class_cond=False, | |
use_checkpoint=False, | |
use_scale_shift_norm=True, | |
resblock_updown=False, | |
use_fp16=False, | |
use_new_attention_order=False, | |
denoise_in_channels=3, | |
denoise_out_channels=3, | |
# ! controlnet args | |
create_controlnet=False, | |
create_dit=False, | |
i23d=False, | |
create_unet_with_hint=False, | |
dit_model_arch='DiT-L/2', | |
# ! ldm unet support | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=-1, # custom transformer support | |
pooling_ctx_dim=768, # custom transformer support | |
roll_out=False, # whether concat in batch, not channel | |
n_embed= | |
None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
mixing_logit_init=-6, | |
hint_channels=3, | |
# unconditional_guidance_scale=1.0, | |
# normalize_clip_encoding=False, # for zero-shot conditioning | |
) | |
res.update(diffusion_defaults()) | |
# res.update(continuous_diffusion_defaults()) | |
return res | |
def classifier_and_diffusion_defaults(): | |
res = classifier_defaults() | |
res.update(diffusion_defaults()) | |
return res | |
def create_model_and_diffusion( | |
# image_size, | |
diffusion_input_size, | |
class_cond, | |
learn_sigma, | |
num_channels, | |
num_res_blocks, | |
channel_mult, | |
num_heads, | |
num_head_channels, | |
num_heads_upsample, | |
attention_resolutions, | |
dropout, | |
diffusion_steps, | |
noise_schedule, | |
timestep_respacing, | |
use_kl, | |
predict_xstart, | |
predict_v, | |
rescale_timesteps, | |
rescale_learned_sigmas, | |
use_checkpoint, | |
use_scale_shift_norm, | |
resblock_updown, | |
use_fp16, | |
use_new_attention_order, | |
denoise_in_channels, | |
denoise_out_channels, | |
standarization_xt, | |
mixed_prediction, | |
# controlnet | |
create_controlnet, | |
# only_mid_control, | |
# control_key, | |
use_spatial_transformer, | |
transformer_depth, | |
context_dim, | |
pooling_ctx_dim, | |
n_embed, | |
legacy, | |
mixing_logit_init, | |
create_dit, | |
i23d, | |
create_unet_with_hint, | |
dit_model_arch, | |
roll_out, | |
hint_channels, | |
# unconditional_guidance_scale, | |
# normalize_clip_encoding, | |
): | |
model = create_model( | |
diffusion_input_size, | |
num_channels, | |
num_res_blocks, | |
channel_mult=channel_mult, | |
learn_sigma=learn_sigma, | |
class_cond=class_cond, | |
use_checkpoint=use_checkpoint, | |
attention_resolutions=attention_resolutions, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dropout=dropout, | |
resblock_updown=resblock_updown, | |
use_fp16=use_fp16, | |
use_new_attention_order=use_new_attention_order, | |
denoise_in_channels=denoise_in_channels, | |
denoise_out_channels=denoise_out_channels, | |
mixed_prediction=mixed_prediction, | |
create_controlnet=create_controlnet, | |
# only_mid_control=only_mid_control, | |
# control_key=control_key, | |
use_spatial_transformer=use_spatial_transformer, | |
transformer_depth=transformer_depth, | |
context_dim=context_dim, | |
pooling_ctx_dim=pooling_ctx_dim, | |
n_embed=n_embed, | |
legacy=legacy, | |
mixing_logit_init=mixing_logit_init, | |
create_dit=create_dit, | |
i23d=i23d, | |
create_unet_with_hint=create_unet_with_hint, | |
dit_model_arch=dit_model_arch, | |
roll_out=roll_out, | |
hint_channels=hint_channels, | |
# normalize_clip_encoding=normalize_clip_encoding, | |
) | |
diffusion = create_gaussian_diffusion( | |
diffusion_steps=diffusion_steps, | |
learn_sigma=learn_sigma, | |
noise_schedule=noise_schedule, | |
use_kl=use_kl, | |
predict_xstart=predict_xstart, | |
predict_v=predict_v, | |
rescale_timesteps=rescale_timesteps, | |
rescale_learned_sigmas=rescale_learned_sigmas, | |
timestep_respacing=timestep_respacing, | |
standarization_xt=standarization_xt, | |
) | |
return model, diffusion | |
def create_model( | |
image_size, | |
num_channels, | |
num_res_blocks, | |
channel_mult="", | |
learn_sigma=False, | |
class_cond=False, | |
use_checkpoint=False, | |
attention_resolutions="16", | |
num_heads=1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
dropout=0, | |
resblock_updown=False, | |
use_fp16=False, | |
use_new_attention_order=False, | |
# denoise_in_channels=3, | |
denoise_in_channels=-1, | |
denoise_out_channels=3, | |
mixed_prediction=False, | |
create_controlnet=False, | |
create_dit=False, | |
i23d=False, | |
create_unet_with_hint=False, | |
dit_model_arch='DiT-L/2', | |
hint_channels=3, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
pooling_ctx_dim=-1, | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
mixing_logit_init=-6, | |
roll_out=False, | |
# normalize_clip_encoding=False, | |
): | |
if channel_mult == "": | |
if image_size == 512: | |
channel_mult = (0.5, 1, 1, 2, 2, 4, 4) | |
elif image_size == 448: | |
channel_mult = (0.5, 1, 1, 2, 2, 4, 4) | |
elif image_size == 320: # ffhq | |
channel_mult = (0.5, 1, 1, 2, 2, 4, 4) | |
elif image_size == 224 and denoise_in_channels == 144: # ffhq | |
channel_mult = (1, 1, 2, 3, 4, 4) | |
elif image_size == 224: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif image_size == 256: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif image_size == 128: | |
channel_mult = (1, 1, 2, 3, 4) | |
elif image_size == 64: | |
channel_mult = (1, 2, 3, 4) | |
elif image_size == 32: # https://github.com/CompVis/latent-diffusion/blob/a506df5756472e2ebaf9078affdde2c4f1502cd4/configs/latent-diffusion/lsun_churches-ldm-kl-8.yaml#L37 | |
channel_mult = (1, 2, 4, 4) | |
elif image_size == 16: # B,12,16,16. just for baseline check. not good performance. | |
channel_mult = (1, 2, 3, 4) | |
else: | |
raise ValueError(f"unsupported image size: {image_size}") | |
else: | |
channel_mult = tuple( | |
int(ch_mult) for ch_mult in channel_mult.split(",")) | |
attention_ds = [] | |
for res in attention_resolutions.split(","): | |
attention_ds.append(image_size // int(res)) | |
if create_controlnet: | |
controlledUnetModel = ControlledUnetModel( | |
image_size=image_size, | |
in_channels=denoise_in_channels, | |
model_channels=num_channels, | |
# out_channels=(3 if not learn_sigma else 6), | |
out_channels=(denoise_out_channels | |
if not learn_sigma else denoise_out_channels * 2), | |
num_res_blocks=num_res_blocks, | |
attention_resolutions=tuple(attention_ds), | |
dropout=dropout, | |
channel_mult=channel_mult, | |
num_classes=(NUM_CLASSES if class_cond else None), | |
use_checkpoint=use_checkpoint, | |
use_fp16=use_fp16, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
resblock_updown=resblock_updown, | |
use_new_attention_order=use_new_attention_order, | |
mixed_prediction=mixed_prediction, | |
# ldm support | |
use_spatial_transformer=use_spatial_transformer, | |
transformer_depth=transformer_depth, | |
context_dim=context_dim, | |
pooling_ctx_dim=pooling_ctx_dim, | |
n_embed=n_embed, | |
legacy=legacy, | |
mixing_logit_init=mixing_logit_init, | |
roll_out=roll_out | |
) | |
controlNet = ControlNet( | |
image_size=image_size, | |
in_channels=denoise_in_channels, | |
model_channels=num_channels, | |
# ! condition channels | |
hint_channels=hint_channels, | |
# out_channels=(3 if not learn_sigma else 6), | |
# out_channels=(denoise_out_channels | |
# if not learn_sigma else denoise_out_channels * 2), | |
num_res_blocks=num_res_blocks, | |
attention_resolutions=tuple(attention_ds), | |
dropout=dropout, | |
channel_mult=channel_mult, | |
# num_classes=(NUM_CLASSES if class_cond else None), | |
use_checkpoint=use_checkpoint, | |
use_fp16=use_fp16, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
resblock_updown=resblock_updown, | |
use_new_attention_order=use_new_attention_order, | |
roll_out=roll_out | |
) | |
# mixed_prediction=mixed_prediction) | |
return controlledUnetModel, controlNet | |
elif create_dit: | |
# return DiT_models[dit_model_arch]( | |
# input_size=image_size, | |
# num_classes=0, | |
# learn_sigma=learn_sigma, | |
# in_channels=denoise_in_channels, | |
# context_dim=context_dim, # add CLIP text embedding | |
# roll_out=roll_out, | |
# vit_blk=TextCondDiTBlock) | |
if i23d: | |
return DiT_models_i23d[dit_model_arch]( | |
input_size=image_size, | |
num_classes=0, | |
learn_sigma=learn_sigma, | |
in_channels=denoise_in_channels, | |
context_dim=context_dim, # add CLIP text embedding | |
roll_out=roll_out, | |
# vit_blk=ImageCondDiTBlock, | |
pooling_ctx_dim=pooling_ctx_dim,) | |
else: # t23d | |
return DiT_models_t23d[dit_model_arch]( | |
input_size=image_size, | |
num_classes=0, | |
learn_sigma=learn_sigma, | |
in_channels=denoise_in_channels, | |
context_dim=context_dim, # add CLIP text embedding | |
roll_out=roll_out, | |
vit_blk=TextCondDiTBlock) | |
else: | |
# if create_unet_with_hint: | |
# unet_cls = UNetModelWithHint | |
# else: | |
unet_cls = UNetModel | |
# st() | |
return unet_cls( | |
image_size=image_size, | |
in_channels=denoise_in_channels, | |
model_channels=num_channels, | |
# out_channels=(3 if not learn_sigma else 6), | |
out_channels=(denoise_out_channels | |
if not learn_sigma else denoise_out_channels * 2), | |
num_res_blocks=num_res_blocks, | |
attention_resolutions=tuple(attention_ds), | |
dropout=dropout, | |
channel_mult=channel_mult, | |
num_classes=(NUM_CLASSES if class_cond else None), | |
use_checkpoint=use_checkpoint, | |
use_fp16=use_fp16, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
resblock_updown=resblock_updown, | |
use_new_attention_order=use_new_attention_order, | |
mixed_prediction=mixed_prediction, | |
# ldm support | |
use_spatial_transformer=use_spatial_transformer, | |
transformer_depth=transformer_depth, | |
context_dim=context_dim, | |
n_embed=n_embed, | |
legacy=legacy, | |
mixing_logit_init=mixing_logit_init, | |
roll_out=roll_out, | |
hint_channels=hint_channels, | |
# normalize_clip_encoding=normalize_clip_encoding, | |
) | |
def create_classifier_and_diffusion( | |
image_size, | |
classifier_use_fp16, | |
classifier_width, | |
classifier_depth, | |
classifier_attention_resolutions, | |
classifier_use_scale_shift_norm, | |
classifier_resblock_updown, | |
classifier_pool, | |
learn_sigma, | |
diffusion_steps, | |
noise_schedule, | |
timestep_respacing, | |
use_kl, | |
predict_xstart, | |
rescale_timesteps, | |
rescale_learned_sigmas, | |
): | |
classifier = create_classifier( | |
image_size, | |
classifier_use_fp16, | |
classifier_width, | |
classifier_depth, | |
classifier_attention_resolutions, | |
classifier_use_scale_shift_norm, | |
classifier_resblock_updown, | |
classifier_pool, | |
) | |
diffusion = create_gaussian_diffusion( | |
steps=diffusion_steps, | |
learn_sigma=learn_sigma, | |
noise_schedule=noise_schedule, | |
use_kl=use_kl, | |
predict_xstart=predict_xstart, | |
rescale_timesteps=rescale_timesteps, | |
rescale_learned_sigmas=rescale_learned_sigmas, | |
timestep_respacing=timestep_respacing, | |
) | |
return classifier, diffusion | |
def create_classifier( | |
image_size, | |
classifier_use_fp16, | |
classifier_width, | |
classifier_depth, | |
classifier_attention_resolutions, | |
classifier_use_scale_shift_norm, | |
classifier_resblock_updown, | |
classifier_pool, | |
): | |
if image_size == 512: | |
channel_mult = (0.5, 1, 1, 2, 2, 4, 4) | |
elif image_size == 256: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif image_size == 128: | |
channel_mult = (1, 1, 2, 3, 4) | |
elif image_size == 64: | |
channel_mult = (1, 2, 3, 4) | |
else: | |
raise ValueError(f"unsupported image size: {image_size}") | |
attention_ds = [] | |
for res in classifier_attention_resolutions.split(","): | |
attention_ds.append(image_size // int(res)) | |
return EncoderUNetModel( | |
image_size=image_size, | |
in_channels=3, | |
model_channels=classifier_width, | |
out_channels=1000, | |
num_res_blocks=classifier_depth, | |
attention_resolutions=tuple(attention_ds), | |
channel_mult=channel_mult, | |
use_fp16=classifier_use_fp16, | |
num_head_channels=64, | |
use_scale_shift_norm=classifier_use_scale_shift_norm, | |
resblock_updown=classifier_resblock_updown, | |
pool=classifier_pool, | |
) | |
def sr_model_and_diffusion_defaults(): | |
res = model_and_diffusion_defaults() | |
res["large_size"] = 256 | |
res["small_size"] = 64 | |
arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0] | |
for k in res.copy().keys(): | |
if k not in arg_names: | |
del res[k] | |
return res | |
def sr_create_model_and_diffusion( | |
large_size, | |
small_size, | |
class_cond, | |
learn_sigma, | |
num_channels, | |
num_res_blocks, | |
num_heads, | |
num_head_channels, | |
num_heads_upsample, | |
attention_resolutions, | |
dropout, | |
diffusion_steps, | |
noise_schedule, | |
timestep_respacing, | |
use_kl, | |
predict_xstart, | |
rescale_timesteps, | |
rescale_learned_sigmas, | |
use_checkpoint, | |
use_scale_shift_norm, | |
resblock_updown, | |
use_fp16, | |
): | |
model = sr_create_model( | |
large_size, | |
small_size, | |
num_channels, | |
num_res_blocks, | |
learn_sigma=learn_sigma, | |
class_cond=class_cond, | |
use_checkpoint=use_checkpoint, | |
attention_resolutions=attention_resolutions, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dropout=dropout, | |
resblock_updown=resblock_updown, | |
use_fp16=use_fp16, | |
) | |
diffusion = create_gaussian_diffusion( | |
steps=diffusion_steps, | |
learn_sigma=learn_sigma, | |
noise_schedule=noise_schedule, | |
use_kl=use_kl, | |
predict_xstart=predict_xstart, | |
rescale_timesteps=rescale_timesteps, | |
rescale_learned_sigmas=rescale_learned_sigmas, | |
timestep_respacing=timestep_respacing, | |
) | |
return model, diffusion | |
def sr_create_model( | |
large_size, | |
small_size, | |
num_channels, | |
num_res_blocks, | |
learn_sigma, | |
class_cond, | |
use_checkpoint, | |
attention_resolutions, | |
num_heads, | |
num_head_channels, | |
num_heads_upsample, | |
use_scale_shift_norm, | |
dropout, | |
resblock_updown, | |
use_fp16, | |
): | |
_ = small_size # hack to prevent unused variable | |
if large_size == 512: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif large_size == 256: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif large_size == 64: | |
channel_mult = (1, 2, 3, 4) | |
else: | |
raise ValueError(f"unsupported large size: {large_size}") | |
attention_ds = [] | |
for res in attention_resolutions.split(","): | |
attention_ds.append(large_size // int(res)) | |
return SuperResModel( | |
image_size=large_size, | |
in_channels=3, | |
model_channels=num_channels, | |
out_channels=(3 if not learn_sigma else 6), | |
num_res_blocks=num_res_blocks, | |
attention_resolutions=tuple(attention_ds), | |
dropout=dropout, | |
channel_mult=channel_mult, | |
num_classes=(NUM_CLASSES if class_cond else None), | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
resblock_updown=resblock_updown, | |
use_fp16=use_fp16, | |
) | |
def create_gaussian_diffusion( | |
*, | |
diffusion_steps=1000, | |
learn_sigma=False, | |
sigma_small=False, | |
noise_schedule="linear", | |
use_kl=False, | |
predict_xstart=False, | |
predict_v=False, | |
rescale_timesteps=False, | |
rescale_learned_sigmas=False, | |
timestep_respacing="", | |
standarization_xt=False, | |
): | |
betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps) | |
if use_kl: | |
loss_type = gd.LossType.RESCALED_KL | |
elif rescale_learned_sigmas: | |
loss_type = gd.LossType.RESCALED_MSE | |
else: | |
loss_type = gd.LossType.MSE # * used here. | |
if not timestep_respacing: | |
timestep_respacing = [diffusion_steps] | |
if predict_xstart: | |
model_mean_type = gd.ModelMeanType.START_X | |
elif predict_v: | |
model_mean_type = gd.ModelMeanType.V | |
else: | |
model_mean_type = gd.ModelMeanType.EPSILON | |
# model_mean_type=( | |
# gd.ModelMeanType.EPSILON if not predict_xstart else | |
# gd.ModelMeanType.START_X # * used gd.ModelMeanType.EPSILON | |
# ), | |
return SpacedDiffusion( | |
use_timesteps=space_timesteps(diffusion_steps, timestep_respacing), | |
betas=betas, | |
model_mean_type=model_mean_type, | |
# ( | |
# gd.ModelMeanType.EPSILON if not predict_xstart else | |
# gd.ModelMeanType.START_X # * used gd.ModelMeanType.EPSILON | |
# ), | |
model_var_type=(( | |
gd.ModelVarType.FIXED_LARGE # * used here | |
if not sigma_small else gd.ModelVarType.FIXED_SMALL) | |
if not learn_sigma else gd.ModelVarType.LEARNED_RANGE), | |
loss_type=loss_type, | |
rescale_timesteps=rescale_timesteps, | |
standarization_xt=standarization_xt, | |
) | |
def add_dict_to_argparser(parser, default_dict): | |
for k, v in default_dict.items(): | |
v_type = type(v) | |
if v is None: | |
v_type = str | |
elif isinstance(v, bool): | |
v_type = str2bool | |
parser.add_argument(f"--{k}", default=v, type=v_type) | |
def args_to_dict(args, keys): | |
return {k: getattr(args, k) for k in keys} | |
def str2bool(v): | |
""" | |
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse | |
""" | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ("yes", "true", "t", "y", "1"): | |
return True | |
elif v.lower() in ("no", "false", "f", "n", "0"): | |
return False | |
else: | |
raise argparse.ArgumentTypeError("boolean value expected") | |