Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
def rms_norm(x, weight=None, eps=1e-05): | |
output = x / torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) | |
return output * weight if weight is not None else output | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, dtype=None, device=None): | |
super().__init__() | |
self.eps = eps | |
if elementwise_affine: | |
self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device)) | |
else: | |
self.register_parameter('weight', None) | |
def forward(self, x): | |
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) |