Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from sgm.modules.diffusionmodules.discretizer import Discretization | |
class Img2ImgDiscretizationWrapper: | |
""" | |
wraps a discretizer, and prunes the sigmas | |
params: | |
strength: float between 0.0 and 1.0. 1.0 means full sampling (all sigmas are returned) | |
""" | |
def __init__(self, discretization: Discretization, strength: float = 1.0): | |
self.discretization = discretization | |
self.strength = strength | |
assert 0.0 <= self.strength <= 1.0 | |
def __call__(self, *args, **kwargs): | |
# sigmas start large first, and decrease then | |
sigmas = self.discretization(*args, **kwargs) | |
print(f"sigmas after discretization, before pruning img2img: ", sigmas) | |
sigmas = torch.flip(sigmas, (0,)) | |
sigmas = sigmas[: max(int(self.strength * len(sigmas)), 1)] | |
print("prune index:", max(int(self.strength * len(sigmas)), 1)) | |
sigmas = torch.flip(sigmas, (0,)) | |
print(f"sigmas after pruning: ", sigmas) | |
return sigmas | |
class Txt2NoisyDiscretizationWrapper: | |
""" | |
wraps a discretizer, and prunes the sigmas | |
params: | |
strength: float between 0.0 and 1.0. 0.0 means full sampling (all sigmas are returned) | |
""" | |
def __init__( | |
self, discretization: Discretization, strength: float = 0.0, original_steps=None | |
): | |
self.discretization = discretization | |
self.strength = strength | |
self.original_steps = original_steps | |
assert 0.0 <= self.strength <= 1.0 | |
def __call__(self, *args, **kwargs): | |
# sigmas start large first, and decrease then | |
sigmas = self.discretization(*args, **kwargs) | |
print(f"sigmas after discretization, before pruning img2img: ", sigmas) | |
sigmas = torch.flip(sigmas, (0,)) | |
if self.original_steps is None: | |
steps = len(sigmas) | |
else: | |
steps = self.original_steps + 1 | |
prune_index = max(min(int(self.strength * steps) - 1, steps - 1), 0) | |
sigmas = sigmas[prune_index:] | |
print("prune index:", prune_index) | |
sigmas = torch.flip(sigmas, (0,)) | |
print(f"sigmas after pruning: ", sigmas) | |
return sigmas | |