Spaces:
Running
on
Zero
Running
on
Zero
# https://github.com/facebookresearch/DiT | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# GLIDE: https://github.com/openai/glide-text2im | |
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py | |
# -------------------------------------------------------- | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import math | |
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp | |
from pdb import set_trace as st | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * | |
torch.arange(start=0, end=half, dtype=torch.float32) / | |
half).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat( | |
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class LabelEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, num_classes, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, | |
hidden_size) | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
def token_drop(self, labels, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(labels.shape[0], | |
device=labels.device) < self.dropout_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
labels = torch.where(drop_ids, self.num_classes, labels) | |
return labels | |
def forward(self, labels, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
labels = self.token_drop(labels, force_drop_ids) | |
embeddings = self.embedding_table(labels) | |
return embeddings | |
################################################################################# | |
# Core DiT Model # | |
################################################################################# | |
class DiTBlock(nn.Module): | |
""" | |
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. | |
""" | |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): | |
super().__init__() | |
self.norm1 = nn.LayerNorm(hidden_size, | |
elementwise_affine=False, | |
eps=1e-6) | |
self.attn = Attention(hidden_size, | |
num_heads=num_heads, | |
qkv_bias=True, | |
**block_kwargs) | |
self.norm2 = nn.LayerNorm(hidden_size, | |
elementwise_affine=False, | |
eps=1e-6) | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.mlp = Mlp(in_features=hidden_size, | |
hidden_features=mlp_hidden_dim, | |
act_layer=approx_gelu, | |
drop=0) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
def forward(self, x, c): | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation( | |
c).chunk(6, dim=1) | |
x = x + gate_msa.unsqueeze(1) * self.attn( | |
modulate(self.norm1(x), shift_msa, scale_msa)) | |
x = x + gate_mlp.unsqueeze(1) * self.mlp( | |
modulate(self.norm2(x), shift_mlp, scale_mlp)) | |
return x | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of DiT, basically the decoder_pred in MAE with adaLN. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, | |
elementwise_affine=False, | |
eps=1e-6) | |
self.linear = nn.Linear(hidden_size, | |
patch_size * patch_size * out_channels, | |
bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class DiT(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
): | |
super().__init__() | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if learn_sigma else in_channels | |
self.patch_size = patch_size | |
self.num_heads = num_heads | |
self.x_embedder = PatchEmbed(input_size, | |
patch_size, | |
in_channels, | |
hidden_size, | |
bias=True) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
if num_classes > 0: | |
self.y_embedder = LabelEmbedder(num_classes, hidden_size, | |
class_dropout_prob) | |
else: | |
self.y_embedder = None | |
num_patches = self.x_embedder.num_patches # 14*14*3 | |
# Will use fixed sin-cos embedding: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), | |
requires_grad=False) | |
self.blocks = nn.ModuleList([ | |
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) | |
for _ in range(depth) | |
]) | |
self.final_layer = FinalLayer(hidden_size, patch_size, | |
self.out_channels) | |
self.initialize_weights() | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize (and freeze) pos_embed by sin-cos embedding: | |
pos_embed = get_2d_sincos_pos_embed( | |
self.pos_embed.shape[-1], int(self.x_embedder.num_patches**0.5)) | |
# st() | |
self.pos_embed.data.copy_( | |
torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.x_embedder.proj.bias, 0) | |
# Initialize label embedding table: | |
if self.y_embedder is not None: | |
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
def unpatchify(self, x): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
p = self.x_embedder.patch_size[0] | |
h = w = int(x.shape[1]**0.5) | |
assert h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
x = torch.einsum('nhwpqc->nchpwq', x) | |
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) | |
return imgs | |
def forward(self, x, t, y=None): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
x = self.x_embedder( | |
x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
t = self.t_embedder(t) # (N, D) | |
if self.y_embedder is not None: | |
assert y is not None | |
y = self.y_embedder(y, self.training) # (N, D) | |
c = t + y # (N, D) | |
else: | |
c = t | |
for block in self.blocks: | |
x = block(x, c) # (N, T, D) | |
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
return x | |
def forward_with_cfg(self, x, t, y, cfg_scale): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
half = x[:len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
model_out = self.forward(combined, t, y) | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] | |
eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) | |
def forward_with_cfg_unconditional(self, x, t, y=None, cfg_scale=None): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
# half = x[:len(x) // 2] | |
# combined = torch.cat([half, half], dim=0) | |
combined = x | |
model_out = self.forward(combined, t, y) | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] | |
# eps, rest = model_out[:, :3], model_out[:, 3:] | |
# cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
# half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
# eps = torch.cat([half_eps, half_eps], dim=0) | |
# return torch.cat([eps, rest], dim=1) | |
# st() | |
return model_out | |
################################################################################# | |
# Sine/Cosine Positional Embedding Functions # | |
################################################################################# | |
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py | |
def get_2d_sincos_pos_embed(embed_dim, | |
grid_size, | |
cls_token=False, | |
extra_tokens=0): | |
""" | |
grid_size: int of the grid height and width | |
return: | |
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
if isinstance(grid_size, tuple): | |
grid_size_h, grid_size_w = grid_size | |
grid_h = np.arange(grid_size_h, dtype=np.float32) | |
grid_w = np.arange(grid_size_w, dtype=np.float32) | |
else: | |
grid_size_h = grid_size_w = grid_size | |
grid_h = np.arange(grid_size, dtype=np.float32) | |
grid_w = np.arange(grid_size, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_size_h, grid_size_w]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token and extra_tokens > 0: | |
pos_embed = np.concatenate( | |
[np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, | |
grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, | |
grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2. | |
omega = 1. / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
################################################################################# | |
# DiT Configs # | |
################################################################################# | |
def DiT_XL_2(**kwargs): | |
return DiT(depth=28, | |
hidden_size=1152, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_XL_4(**kwargs): | |
return DiT(depth=28, | |
hidden_size=1152, | |
patch_size=4, | |
num_heads=16, | |
**kwargs) | |
def DiT_XL_8(**kwargs): | |
return DiT(depth=28, | |
hidden_size=1152, | |
patch_size=8, | |
num_heads=16, | |
**kwargs) | |
def DiT_L_2(**kwargs): | |
return DiT(depth=24, | |
hidden_size=1024, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_L_4(**kwargs): | |
return DiT(depth=24, | |
hidden_size=1024, | |
patch_size=4, | |
num_heads=16, | |
**kwargs) | |
def DiT_L_8(**kwargs): | |
return DiT(depth=24, | |
hidden_size=1024, | |
patch_size=8, | |
num_heads=16, | |
**kwargs) | |
def DiT_B_2(**kwargs): | |
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) | |
def DiT_B_4(**kwargs): | |
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) | |
def DiT_B_8(**kwargs): | |
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) | |
def DiT_B_16(**kwargs): # ours cfg | |
return DiT(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs) | |
def DiT_S_2(**kwargs): | |
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) | |
def DiT_S_4(**kwargs): | |
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) | |
def DiT_S_8(**kwargs): | |
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) | |
DiT_models = { | |
'DiT-XL/2': DiT_XL_2, | |
'DiT-XL/4': DiT_XL_4, | |
'DiT-XL/8': DiT_XL_8, | |
'DiT-L/2': DiT_L_2, | |
'DiT-L/4': DiT_L_4, | |
'DiT-L/8': DiT_L_8, | |
'DiT-B/2': DiT_B_2, | |
'DiT-B/4': DiT_B_4, | |
'DiT-B/8': DiT_B_8, | |
'DiT-B/16': DiT_B_16, | |
'DiT-S/2': DiT_S_2, | |
'DiT-S/4': DiT_S_4, | |
'DiT-S/8': DiT_S_8, | |
} | |