Spaces:
Running
on
Zero
Running
on
Zero
import functools | |
import torch.nn as nn | |
from .util import ActNorm | |
def weights_init(m): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
nn.init.normal_(m.weight.data, 0.0, 0.02) | |
elif classname.find("BatchNorm") != -1: | |
nn.init.normal_(m.weight.data, 1.0, 0.02) | |
nn.init.constant_(m.bias.data, 0) | |
class NLayerDiscriminator(nn.Module): | |
"""Defines a PatchGAN discriminator as in Pix2Pix | |
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py | |
""" | |
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): | |
"""Construct a PatchGAN discriminator | |
Parameters: | |
input_nc (int) -- the number of channels in input images | |
ndf (int) -- the number of filters in the last conv layer | |
n_layers (int) -- the number of conv layers in the discriminator | |
norm_layer -- normalization layer | |
""" | |
super(NLayerDiscriminator, self).__init__() | |
if not use_actnorm: | |
norm_layer = nn.BatchNorm2d | |
else: | |
norm_layer = ActNorm | |
if ( | |
type(norm_layer) == functools.partial | |
): # no need to use bias as BatchNorm2d has affine parameters | |
use_bias = norm_layer.func != nn.BatchNorm2d | |
else: | |
use_bias = norm_layer != nn.BatchNorm2d | |
kw = 4 | |
padw = 1 | |
sequence = [ | |
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), | |
nn.LeakyReLU(0.2, True), | |
] | |
nf_mult = 1 | |
nf_mult_prev = 1 | |
for n in range(1, n_layers): # gradually increase the number of filters | |
nf_mult_prev = nf_mult | |
nf_mult = min(2**n, 8) | |
sequence += [ | |
nn.Conv2d( | |
ndf * nf_mult_prev, | |
ndf * nf_mult, | |
kernel_size=kw, | |
stride=2, | |
padding=padw, | |
bias=use_bias, | |
), | |
norm_layer(ndf * nf_mult), | |
nn.LeakyReLU(0.2, True), | |
] | |
nf_mult_prev = nf_mult | |
nf_mult = min(2**n_layers, 8) | |
sequence += [ | |
nn.Conv2d( | |
ndf * nf_mult_prev, | |
ndf * nf_mult, | |
kernel_size=kw, | |
stride=1, | |
padding=padw, | |
bias=use_bias, | |
), | |
norm_layer(ndf * nf_mult), | |
nn.LeakyReLU(0.2, True), | |
] | |
sequence += [ | |
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) | |
] # output 1 channel prediction map | |
self.main = nn.Sequential(*sequence) | |
def forward(self, input): | |
"""Standard forward.""" | |
return self.main(input) | |