LN3Diff_I23D / scripts /vit_triplane_cvD_train_ffhq.py
NIRVANALAN
init
11e6f7b
raw
history blame
11.4 kB
"""
Train a diffusion model on images.
"""
import json
import sys
import os
sys.path.append('.')
import torch.distributed as dist
import traceback
import torch as th
import torch.multiprocessing as mp
import numpy as np
import argparse
import dnnlib
from dnnlib.util import EasyDict, InfiniteSampler
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
args_to_dict,
add_dict_to_argparser,
)
# from nsr.train_util import TrainLoop3DRec as TrainLoop
import nsr
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default
from datasets.shapenet import load_data, load_eval_data, load_memory_data
from nsr.losses.builder import E3DGELossClass
from torch.utils.data import Subset
from datasets.eg3d_dataset import init_dataset_kwargs
from utils.torch_utils import legacy, misc
from pdb import set_trace as st
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16
SEED = 0
def training_loop(args):
# def training_loop(args):
dist_util.setup_dist(args)
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count())
print(f"{args.local_rank=} init complete")
th.cuda.set_device(args.local_rank)
th.cuda.empty_cache()
th.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
logger.configure(dir=args.logdir)
logger.log("creating encoder and NSR decoder...")
# device = dist_util.dev()
device = th.device("cuda", args.local_rank)
# shared eg3d opts
opts = eg3d_options_default()
# if args.sr_training:
# args.sr_kwargs = dnnlib.EasyDict(
# channel_base=opts.cbase,
# channel_max=opts.cmax,
# fused_modconv_default='inference_only',
# use_noise=True
# ) # ! close noise injection? since noise_mode='none' in eg3d
logger.log("creating data loader...")
# data = load_data(
# if args.overfitting:
# data = load_memory_data(
# file_path=args.data_dir,
# batch_size=args.batch_size,
# reso=args.image_size,
# reso_encoder=args.image_size_encoder, # 224 -> 128
# num_workers=args.num_workers,
# # load_depth=args.depth_lambda > 0
# load_depth=True # for evaluation
# )
# else:
# data = load_data(
# dataset_size=args.dataset_size,
# file_path=args.data_dir,
# batch_size=args.batch_size,
# reso=args.image_size,
# reso_encoder=args.image_size_encoder, # 224 -> 128
# num_workers=args.num_workers,
# load_depth=True,
# preprocess=auto_encoder.preprocess # clip
# # load_depth=True # for evaluation
# )
# eval_data = load_eval_data(
# file_path=args.eval_data_dir,
# batch_size=args.eval_batch_size,
# reso=args.image_size,
# reso_encoder=args.image_size_encoder, # 224 -> 128
# num_workers=2,
# load_depth=True, # for evaluation
# preprocess=auto_encoder.preprocess)
# ! load pre-trained SR in G
common_kwargs = dict(c_dim=25, img_resolution=512, img_channels=3)
G_kwargs = EasyDict(class_name=None,
z_dim=512,
w_dim=512,
mapping_kwargs=EasyDict())
G_kwargs.channel_base = opts.cbase
G_kwargs.channel_max = opts.cmax
G_kwargs.mapping_kwargs.num_layers = opts.map_depth
G_kwargs.class_name = opts.g_class_name
G_kwargs.fused_modconv_default = 'inference_only' # Speed up training by using regular convolutions instead of grouped convolutions.
G_kwargs.rendering_kwargs = args.rendering_kwargs
G_kwargs.num_fp16_res = 0
G_kwargs.sr_num_fp16_res = 4
G_kwargs.sr_kwargs = EasyDict(channel_base=opts.cbase,
channel_max=opts.cmax,
fused_modconv_default='inference_only',
use_noise=True) # ! close noise injection? since noise_mode='none' in eg3d
G_kwargs.num_fp16_res = opts.g_num_fp16_res
G_kwargs.conv_clamp = 256 if opts.g_num_fp16_res > 0 else None
# creating G
resume_data = th.load(args.resume_checkpoint_EG3D, map_location='cuda:{}'.format(args.local_rank))
G_ema = dnnlib.util.construct_class_by_name(
**G_kwargs, **common_kwargs).train().requires_grad_(False).to(
dist_util.dev()) # subclass of th.nn.Module
for name, module in [
('G_ema', G_ema),
# ('D', D),
]:
misc.copy_params_and_buffers(
resume_data[name], # type: ignore
module,
require_all=True,
# load_except=d_load_except if name == 'D' else [],
)
G_ema.requires_grad_(False)
G_ema.eval()
if args.sr_training:
args.sr_kwargs = G_kwargs.sr_kwargs # uncomment if needs to train with SR module
auto_encoder = create_3DAE_model(
**args_to_dict(args,
encoder_and_nsr_defaults().keys()))
auto_encoder.to(device)
auto_encoder.train()
# * clone G_ema.decoder to auto_encoder triplane
logger.log("AE triplane decoder reuses G_ema decoder...")
auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg)
auto_encoder.decoder.triplane_decoder.decoder.load_state_dict( # type: ignore
G_ema.decoder.state_dict()) # type: ignore
# set grad=False in this manner suppresses the DDP forward no grad error.
for param in auto_encoder.decoder.triplane_decoder.decoder.parameters(): # type: ignore
param.requires_grad_(False)
if args.sr_training:
logger.log("AE triplane decoder reuses G_ema SR module...")
auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict( # type: ignore
G_ema.superresolution.state_dict()) # type: ignore
# set grad=False in this manner suppresses the DDP forward no grad error.
for param in auto_encoder.decoder.triplane_decoder.superresolution.parameters(): # type: ignore
param.requires_grad_(False)
del resume_data, G_ema
th.cuda.empty_cache()
auto_encoder.to(dist_util.dev())
auto_encoder.train()
# ! load FFHQ/AFHQ
# Training set.
# training_set_kwargs, dataset_name = init_dataset_kwargs(data=args.data_dir, class_name='datasets.eg3d_dataset.ImageFolderDatasetPose') # only load pose here
training_set_kwargs, dataset_name = init_dataset_kwargs(data=args.data_dir, class_name='datasets.eg3d_dataset.ImageFolderDataset') # only load pose here
# if args.cond and not training_set_kwargs.use_labels:
# raise Exception('check here')
# training_set_kwargs.use_labels = args.cond
training_set_kwargs.use_labels = True
training_set_kwargs.xflip = False
training_set_kwargs.random_seed = SEED
# desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}'
# * construct ffhq/afhq dataset
training_set = dnnlib.util.construct_class_by_name(
**training_set_kwargs) # subclass of training.dataset.Dataset
training_set = dnnlib.util.construct_class_by_name(
**training_set_kwargs) # subclass of training.dataset.Dataset
training_set_sampler = InfiniteSampler(
dataset=training_set,
rank=dist_util.get_rank(),
num_replicas=dist_util.get_world_size(),
seed=SEED)
data = iter(
th.utils.data.DataLoader(dataset=training_set,
sampler=training_set_sampler,
batch_size=args.batch_size,
pin_memory=True,
num_workers=args.num_workers,))
# prefetch_factor=2))
eval_data = th.utils.data.DataLoader(dataset=Subset(training_set, np.arange(10)),
batch_size=args.eval_batch_size,
num_workers=1)
args.img_size = [args.image_size_encoder]
# try dry run
# batch = next(data)
# batch = None
# logger.log("creating model and diffusion...")
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()))
loss_class = E3DGELossClass(device, opt).to(device)
# writer = SummaryWriter() # TODO, add log dir
logger.log("training...")
TrainLoop = {
'cvD': nsr.TrainLoop3DcvD,
'nvsD': nsr.TrainLoop3DcvD_nvsD,
'cano_nvs_cvD': nsr.TrainLoop3DcvD_nvsD_canoD,
'canoD': nsr.TrainLoop3DcvD_canoD
}[args.trainer_name]
TrainLoop(rec_model=auto_encoder,
loss_class=loss_class,
data=data,
eval_data=eval_data,
**vars(args)).run_loop() # ! overfitting
def create_argparser(**kwargs):
# defaults.update(model_and_diffusion_defaults())
defaults = dict(
dataset_size=-1,
trainer_name='cvD',
use_amp=False,
overfitting=False,
num_workers=4,
image_size=128,
image_size_encoder=224,
iterations=150000,
anneal_lr=False,
lr=5e-5,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
eval_batch_size=12,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=50,
eval_interval=2500,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
data_dir="",
eval_data_dir="",
# load_depth=False, # TODO
logdir="/mnt/lustre/yslan/logs/nips23/",
resume_checkpoint_EG3D="",
)
defaults.update(encoder_and_nsr_defaults()) # type: ignore
defaults.update(loss_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
os.environ[
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
# master_addr = '127.0.0.1'
# master_port = dist_util._find_free_port()
# master_port = 31323
args = create_argparser().parse_args()
args.local_rank = int(os.environ["LOCAL_RANK"])
args.gpus = th.cuda.device_count()
opts = args
args.rendering_kwargs = rendering_options_defaults(opts)
# print(args)
with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=2)
# Launch processes.
print('Launching processes...')
try:
training_loop(args)
# except KeyboardInterrupt as e:
except Exception as e:
# print(e)
traceback.print_exc()
dist_util.cleanup() # clean port and socket when ctrl+c