Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Train a diffusion model on images. | |
""" | |
import random | |
import json | |
import sys | |
import os | |
sys.path.append('.') | |
import torch.distributed as dist | |
import traceback | |
import torch as th | |
import torch.multiprocessing as mp | |
import numpy as np | |
import argparse | |
import dnnlib | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.script_util import ( | |
args_to_dict, | |
add_dict_to_argparser, | |
) | |
# from nsr.train_util import TrainLoop3DRec as TrainLoop | |
from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch, TrainLoop3DRecNVPatchSingleForward, TrainLoop3DRecNVPatchSingleForwardMV, TrainLoop3DRecNVPatchSingleForwardMVAdvLoss | |
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default, dataset_defaults | |
from nsr.losses.builder import E3DGELossClass, E3DGE_with_AdvLoss | |
from pdb import set_trace as st | |
# th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 | |
# th.backends.cuda.matmul.allow_tf32 = True | |
# th.backends.cudnn.allow_tf32 = True | |
# th.backends.cudnn.enabled = True | |
enable_tf32 = th.backends.cuda.matmul.allow_tf32 # requires A100 | |
th.backends.cuda.matmul.allow_tf32 = enable_tf32 | |
th.backends.cudnn.allow_tf32 = enable_tf32 | |
th.backends.cudnn.enabled = True | |
def training_loop(args): | |
# def training_loop(args): | |
dist_util.setup_dist(args) | |
# th.autograd.set_detect_anomaly(True) # type: ignore | |
th.autograd.set_detect_anomaly(False) # type: ignore | |
# https://blog.csdn.net/qq_41682740/article/details/126304613 | |
SEED = args.seed | |
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) | |
logger.log(f"{args.local_rank=} init complete, seed={SEED}") | |
th.cuda.set_device(args.local_rank) | |
th.cuda.empty_cache() | |
# * deterministic algorithms flags | |
th.cuda.manual_seed_all(SEED) | |
np.random.seed(SEED) | |
random.seed(SEED) | |
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
logger.configure(dir=args.logdir) | |
logger.log("creating encoder and NSR decoder...") | |
# device = dist_util.dev() | |
device = th.device("cuda", args.local_rank) | |
# shared eg3d opts | |
opts = eg3d_options_default() | |
if args.sr_training: | |
args.sr_kwargs = dnnlib.EasyDict( | |
channel_base=opts.cbase, | |
channel_max=opts.cmax, | |
fused_modconv_default='inference_only', | |
use_noise=True | |
) # ! close noise injection? since noise_mode='none' in eg3d | |
auto_encoder = create_3DAE_model( | |
**args_to_dict(args, | |
encoder_and_nsr_defaults().keys())) | |
auto_encoder.to(device) | |
auto_encoder.train() | |
logger.log("creating data loader...") | |
# data = load_data( | |
# st() | |
if args.objv_dataset: | |
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data | |
else: # shapenet | |
from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
if args.overfitting: | |
data = load_memory_data( | |
file_path=args.data_dir, | |
batch_size=args.batch_size, | |
reso=args.image_size, | |
reso_encoder=args.image_size_encoder, # 224 -> 128 | |
num_workers=args.num_workers, | |
# load_depth=args.depth_lambda > 0 | |
# load_depth=True, # for evaluation | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
eval_data = None | |
else: | |
if args.use_wds: | |
# st() | |
if args.data_dir == 'NONE': | |
with open(args.shards_lst) as f: | |
shards_lst = [url.strip() for url in f.readlines()] | |
data = load_wds_data( | |
shards_lst, # type: ignore | |
args.image_size, | |
args.image_size_encoder, | |
args.batch_size, | |
args.num_workers, | |
# plucker_embedding=args.plucker_embedding, | |
# mv_input=args.mv_input, | |
# split_chunk_input=args.split_chunk_input, | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
elif not args.inference: | |
data = load_wds_data(args.data_dir, | |
args.image_size, | |
args.image_size_encoder, | |
args.batch_size, | |
args.num_workers, | |
plucker_embedding=args.plucker_embedding, | |
mv_input=args.mv_input, | |
split_chunk_input=args.split_chunk_input) | |
else: | |
data = None | |
# ! load eval | |
if args.eval_data_dir == 'NONE': | |
with open(args.eval_shards_lst) as f: | |
eval_shards_lst = [url.strip() for url in f.readlines()] | |
else: | |
eval_shards_lst = args.eval_data_dir # auto expanded | |
eval_data = load_wds_data( | |
eval_shards_lst, # type: ignore | |
args.image_size, | |
args.image_size_encoder, | |
args.eval_batch_size, | |
args.num_workers, | |
# decode_encode_img_only=args.decode_encode_img_only, | |
# plucker_embedding=args.plucker_embedding, | |
# load_wds_diff=False, | |
# mv_input=args.mv_input, | |
# split_chunk_input=args.split_chunk_input, | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
# load_instance=True) # TODO | |
else: | |
if args.inference: | |
data = None | |
else: | |
data = load_data( | |
file_path=args.data_dir, | |
batch_size=args.batch_size, | |
reso=args.image_size, | |
reso_encoder=args.image_size_encoder, # 224 -> 128 | |
num_workers=args.num_workers, | |
**args_to_dict(args, | |
dataset_defaults().keys()) | |
) | |
if args.pose_warm_up_iter > 0: | |
overfitting_dataset = load_memory_data( | |
file_path=args.data_dir, | |
batch_size=args.batch_size, | |
reso=args.image_size, | |
reso_encoder=args.image_size_encoder, # 224 -> 128 | |
num_workers=args.num_workers, | |
# load_depth=args.depth_lambda > 0 | |
# load_depth=True # for evaluation | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
data = [data, overfitting_dataset, args.pose_warm_up_iter] | |
eval_data = load_eval_data( | |
file_path=args.eval_data_dir, | |
batch_size=args.eval_batch_size, | |
reso=args.image_size, | |
reso_encoder=args.image_size_encoder, # 224 -> 128 | |
num_workers=args.num_workers, | |
load_depth=True, # for evaluation | |
preprocess=auto_encoder.preprocess, | |
# interval=args.interval, | |
# use_lmdb=args.use_lmdb, | |
# plucker_embedding=args.plucker_embedding, | |
# load_real=args.load_real, | |
# four_view_for_latent=args.four_view_for_latent, | |
# load_extra_36_view=args.load_extra_36_view, | |
# shuffle_across_cls=args.shuffle_across_cls, | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
logger.log("creating data loader done...") | |
args.img_size = [args.image_size_encoder] | |
# try dry run | |
# batch = next(data) | |
# batch = None | |
# logger.log("creating model and diffusion...") | |
# let all processes sync up before starting with a new epoch of training | |
dist_util.synchronize() | |
# schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) | |
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
# opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start | |
if 'disc' in args.trainer_name: | |
loss_class = E3DGE_with_AdvLoss( | |
device, | |
opt, | |
# disc_weight=args.patchgan_disc, # rec_cvD_lambda | |
disc_factor=args.patchgan_disc_factor, # reduce D update speed | |
disc_weight=args.patchgan_disc_g_weight).to(device) | |
else: | |
loss_class = E3DGELossClass(device, opt).to(device) | |
# writer = SummaryWriter() # TODO, add log dir | |
logger.log("training...") | |
TrainLoop = { | |
'input_rec': TrainLoop3DRec, | |
'nv_rec': TrainLoop3DRecNV, | |
# 'nv_rec_patch': TrainLoop3DRecNVPatch, | |
'nv_rec_patch': TrainLoop3DRecNVPatchSingleForward, | |
'nv_rec_patch_mvE': TrainLoop3DRecNVPatchSingleForwardMV, | |
'nv_rec_patch_mvE_disc': TrainLoop3DRecNVPatchSingleForwardMVAdvLoss, # default for objaverse | |
}[args.trainer_name] | |
logger.log("creating TrainLoop done...") | |
# th._dynamo.config.verbose=True # th212 required | |
# th._dynamo.config.suppress_errors = True | |
auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs | |
train_loop = TrainLoop( | |
rec_model=auto_encoder, | |
loss_class=loss_class, | |
data=data, | |
eval_data=eval_data, | |
# compile=args.compile, | |
**vars(args)) | |
if args.inference: | |
# camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev()) # 40, 25 | |
camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())[:24] # 40, 25 | |
train_loop.eval_novelview_loop(camera=camera, | |
save_latent=args.save_latent) | |
else: | |
train_loop.run_loop() | |
def create_argparser(**kwargs): | |
# defaults.update(model_and_diffusion_defaults()) | |
defaults = dict( | |
seed=0, | |
dataset_size=-1, | |
trainer_name='input_rec', | |
use_amp=False, | |
overfitting=False, | |
num_workers=4, | |
image_size=128, | |
image_size_encoder=224, | |
iterations=150000, | |
anneal_lr=False, | |
lr=5e-5, | |
weight_decay=0.0, | |
lr_anneal_steps=0, | |
batch_size=1, | |
eval_batch_size=12, | |
microbatch=-1, # -1 disables microbatches | |
ema_rate="0.9999", # comma-separated list of EMA values | |
log_interval=50, | |
eval_interval=2500, | |
save_interval=10000, | |
resume_checkpoint="", | |
use_fp16=False, | |
fp16_scale_growth=1e-3, | |
data_dir="", | |
eval_data_dir="", | |
# load_depth=False, # TODO | |
logdir="/mnt/lustre/yslan/logs/nips23/", | |
# test warm up pose sampling training | |
pose_warm_up_iter=-1, | |
inference=False, | |
export_latent=False, | |
save_latent=False, | |
) | |
defaults.update(dataset_defaults()) # type: ignore | |
defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
defaults.update(loss_defaults()) | |
parser = argparse.ArgumentParser() | |
add_dict_to_argparser(parser, defaults) | |
return parser | |
if __name__ == "__main__": | |
# os.environ[ | |
# "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
# os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" | |
# os.environ["NCCL_DEBUG"]="INFO" | |
args = create_argparser().parse_args() | |
args.local_rank = int(os.environ["LOCAL_RANK"]) | |
# if os.environ['WORLD_SIZE'] > 1: | |
# args.global_rank = int(os.environ["RANK"]) | |
args.gpus = th.cuda.device_count() | |
opts = args | |
args.rendering_kwargs = rendering_options_defaults(opts) | |
# print(args) | |
with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
json.dump(vars(args), f, indent=2) | |
# Launch processes. | |
print('Launching processes...') | |
try: | |
training_loop(args) | |
# except KeyboardInterrupt as e: | |
except Exception as e: | |
# print(e) | |
traceback.print_exc() | |
dist_util.cleanup() # clean port and socket when ctrl+c | |