LN3Diff_I23D / sgm /configs /mv23d-clipl-compat-fm-lognorm.yaml
NIRVANALAN
init
11e6f7b
raw
history blame
1.93 kB
ldm_configs:
# scheduler_config:
# target: sgm.lr_scheduler.LambdaLinearScheduler
# params:
# warm_up_steps: [10000]
# cycle_lengths: [10000000000000]
# f_start: [1.e-6]
# f_max: [1.]
# f_min: [1.]
# denoiser_config:
# target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
# params:
# num_idx: 1000
# scaling_config:
# target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
# discretization_config:
# target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: False
input_key: 'img'
ucg_rate: 0.1
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageMVEmbedder
params:
open_clip_embedding_config:
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
params:
arch: 'ViT-L-14'
version: 'openai'
freeze: True # TODO, add ModLN later
output_tokens: True
- is_trainable: True
input_key: 'img-c'
ucg_rate: 0.1
# legacy_ucg_value: None
target: sgm.modules.encoders.modules.FrozenDinov2ImageEmbedderMV
params:
freeze: False
enable_bf16: True
output_cls: False # return pooling
arch: vitb
n_cond_frames: 4 # first 4 views as cond
modLN: True
loss_fn_config:
target: sgm.modules.diffusionmodules.loss.FMLoss
params:
transport_config:
target: transport.create_transport
params: # all follow default
snr_type: lognorm
guider_config:
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
params:
# scale: 1.0
scale: 5.0