LN3Diff_I23D / utils /general_utils.py
NIRVANALAN
init
11e6f7b
raw
history blame
6.77 kB
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
import sys
from datetime import datetime
import numpy as np
import random
def inverse_sigmoid(x):
return torch.log(x/(1-x))
def PILtoTorch(pil_image, resolution):
resized_image_PIL = pil_image.resize(resolution)
resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0
if len(resized_image.shape) == 3:
return resized_image.permute(2, 0, 1)
else:
return resized_image.unsqueeze(dim=-1).permute(2, 0, 1)
def get_expon_lr_func(
lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
):
"""
Copied from Plenoxels
Continuous learning rate decay function. Adapted from JaxNeRF
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
is log-linearly interpolated elsewhere (equivalent to exponential decay).
If lr_delay_steps>0 then the learning rate will be scaled by some smooth
function of lr_delay_mult, such that the initial learning rate is
lr_init*lr_delay_mult at the beginning of optimization but will be eased back
to the normal learning rate when steps>lr_delay_steps.
:param conf: config subtree 'lr' or similar
:param max_steps: int, the number of steps during optimization.
:return HoF which takes step as input
"""
def helper(step):
if step < 0 or (lr_init == 0.0 and lr_final == 0.0):
# Disable this parameter
return 0.0
if lr_delay_steps > 0:
# A kind of reverse cosine decay.
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1)
)
else:
delay_rate = 1.0
t = np.clip(step / max_steps, 0, 1)
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
return delay_rate * log_lerp
return helper
def strip_lowerdiag(L):
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")
uncertainty[:, 0] = L[:, 0, 0]
uncertainty[:, 1] = L[:, 0, 1]
uncertainty[:, 2] = L[:, 0, 2]
uncertainty[:, 3] = L[:, 1, 1]
uncertainty[:, 4] = L[:, 1, 2]
uncertainty[:, 5] = L[:, 2, 2]
return uncertainty
def strip_symmetric(sym):
return strip_lowerdiag(sym)
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
"""
From Pytorch3d
Convert a unit quaternion to a standard form: one in which the real
part is non negative.
Args:
quaternions: Quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Standardized quaternions as tensor of shape (..., 4).
"""
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
def quaternion_raw_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""
From Pytorch3d
Multiply two quaternions.
Usual torch rules for broadcasting apply.
Args:
a: Quaternions as tensor of shape (..., 4), real part first.
b: Quaternions as tensor of shape (..., 4), real part first.
Returns:
The product of a and b, a tensor of quaternions shape (..., 4).
"""
aw, ax, ay, az = torch.unbind(a, -1)
bw, bx, by, bz = torch.unbind(b, -1)
ow = aw * bw - ax * bx - ay * by - az * bz
ox = aw * bx + ax * bw + ay * bz - az * by
oy = aw * by - ax * bz + ay * bw + az * bx
oz = aw * bz + ax * by - ay * bx + az * bw
return torch.stack((ow, ox, oy, oz), -1)
# Matrix to quaternion does not come under NVIDIA Copyright
# Written by Stan Szymanowicz 2023
def matrix_to_quaternion(M: torch.Tensor) -> torch.Tensor:
"""
Matrix-to-quaternion conversion method. Equation taken from
https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
Args:
M: rotation matrices, (3 x 3)
Returns:
q: quaternion of shape (4)
"""
tr = 1 + M[ 0, 0] + M[ 1, 1] + M[ 2, 2]
if tr > 0:
r = torch.sqrt(tr) / 2.0
x = ( M[ 2, 1] - M[ 1, 2] ) / ( 4 * r )
y = ( M[ 0, 2] - M[ 2, 0] ) / ( 4 * r )
z = ( M[ 1, 0] - M[ 0, 1] ) / ( 4 * r )
elif ( M[ 0, 0] > M[ 1, 1]) and (M[ 0, 0] > M[ 2, 2]):
S = torch.sqrt(1.0 + M[ 0, 0] - M[ 1, 1] - M[ 2, 2]) * 2 # S=4*qx
r = (M[ 2, 1] - M[ 1, 2]) / S
x = 0.25 * S
y = (M[ 0, 1] + M[ 1, 0]) / S
z = (M[ 0, 2] + M[ 2, 0]) / S
elif M[ 1, 1] > M[ 2, 2]:
S = torch.sqrt(1.0 + M[ 1, 1] - M[ 0, 0] - M[ 2, 2]) * 2 # S=4*qy
r = (M[ 0, 2] - M[ 2, 0]) / S
x = (M[ 0, 1] + M[ 1, 0]) / S
y = 0.25 * S
z = (M[ 1, 2] + M[ 2, 1]) / S
else:
S = torch.sqrt(1.0 + M[ 2, 2] - M[ 0, 0] - M[ 1, 1]) * 2 # S=4*qz
r = (M[ 1, 0] - M[ 0, 1]) / S
x = (M[ 0, 2] + M[ 2, 0]) / S
y = (M[ 1, 2] + M[ 2, 1]) / S
z = 0.25 * S
return torch.stack([r, x, y, z], dim=-1)
def build_rotation(r):
norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3])
q = r / norm[:, None]
R = torch.zeros((q.size(0), 3, 3), device='cuda')
r = q[:, 0]
x = q[:, 1]
y = q[:, 2]
z = q[:, 3]
R[:, 0, 0] = 1 - 2 * (y*y + z*z)
R[:, 0, 1] = 2 * (x*y - r*z)
R[:, 0, 2] = 2 * (x*z + r*y)
R[:, 1, 0] = 2 * (x*y + r*z)
R[:, 1, 1] = 1 - 2 * (x*x + z*z)
R[:, 1, 2] = 2 * (y*z - r*x)
R[:, 2, 0] = 2 * (x*z - r*y)
R[:, 2, 1] = 2 * (y*z + r*x)
R[:, 2, 2] = 1 - 2 * (x*x + y*y)
return R
def build_scaling_rotation(s, r):
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
R = build_rotation(r)
L[:,0,0] = s[:,0]
L[:,1,1] = s[:,1]
L[:,2,2] = s[:,2]
L = R @ L
return L
def safe_state(cfg, silent=False):
old_f = sys.stdout
class F:
def __init__(self, silent):
self.silent = silent
def write(self, x):
if not self.silent:
if x.endswith("\n"):
old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S")))))
else:
old_f.write(x)
def flush(self):
old_f.flush()
sys.stdout = F(silent)
random.seed(cfg.general.random_seed)
np.random.seed(cfg.general.random_seed)
torch.manual_seed(cfg.general.random_seed)
device = torch.device("cuda:{}".format(cfg.general.device))
torch.cuda.set_device(device)
return device