Spaces:
Running
on
Zero
Running
on
Zero
# --------------------------------------------------------------- | |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# This work is licensed under the NVIDIA Source Code License | |
# for LSGM. To view a copy of this license, see the LICENSE file. | |
# --------------------------------------------------------------- | |
import logging | |
import os | |
import math | |
import shutil | |
import time | |
import sys | |
import types | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import torch.distributed as dist | |
# from util.distributions import PixelNormal | |
from torch.cuda.amp import autocast | |
# from tensorboardX import SummaryWriter | |
class AvgrageMeter(object): | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.avg = 0 | |
self.sum = 0 | |
self.cnt = 0 | |
def update(self, val, n=1): | |
self.sum += val * n | |
self.cnt += n | |
self.avg = self.sum / self.cnt | |
class ExpMovingAvgrageMeter(object): | |
def __init__(self, momentum=0.9): | |
self.momentum = momentum | |
self.reset() | |
def reset(self): | |
self.avg = 0 | |
def update(self, val): | |
self.avg = (1. - self.momentum) * self.avg + self.momentum * val | |
class DummyDDP(nn.Module): | |
def __init__(self, model): | |
super(DummyDDP, self).__init__() | |
self.module = model | |
def forward(self, *input, **kwargs): | |
return self.module(*input, **kwargs) | |
def count_parameters_in_M(model): | |
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6 | |
def save_checkpoint(state, is_best, save): | |
filename = os.path.join(save, 'checkpoint.pth.tar') | |
torch.save(state, filename) | |
if is_best: | |
best_filename = os.path.join(save, 'model_best.pth.tar') | |
shutil.copyfile(filename, best_filename) | |
def save(model, model_path): | |
torch.save(model.state_dict(), model_path) | |
def load(model, model_path): | |
model.load_state_dict(torch.load(model_path)) | |
def create_exp_dir(path, scripts_to_save=None): | |
if not os.path.exists(path): | |
os.makedirs(path, exist_ok=True) | |
print('Experiment dir : {}'.format(path)) | |
if scripts_to_save is not None: | |
if not os.path.exists(os.path.join(path, 'scripts')): | |
os.mkdir(os.path.join(path, 'scripts')) | |
for script in scripts_to_save: | |
dst_file = os.path.join(path, 'scripts', os.path.basename(script)) | |
shutil.copyfile(script, dst_file) | |
class Logger(object): | |
def __init__(self, rank, save): | |
# other libraries may set logging before arriving at this line. | |
# by reloading logging, we can get rid of previous configs set by other libraries. | |
from importlib import reload | |
reload(logging) | |
self.rank = rank | |
if self.rank == 0: | |
log_format = '%(asctime)s %(message)s' | |
logging.basicConfig(stream=sys.stdout, level=logging.INFO, | |
format=log_format, datefmt='%m/%d %I:%M:%S %p') | |
fh = logging.FileHandler(os.path.join(save, 'log.txt')) | |
fh.setFormatter(logging.Formatter(log_format)) | |
logging.getLogger().addHandler(fh) | |
self.start_time = time.time() | |
def info(self, string, *args): | |
if self.rank == 0: | |
elapsed_time = time.time() - self.start_time | |
elapsed_time = time.strftime( | |
'(Elapsed: %H:%M:%S) ', time.gmtime(elapsed_time)) | |
if isinstance(string, str): | |
string = elapsed_time + string | |
else: | |
logging.info(elapsed_time) | |
logging.info(string, *args) | |
class Writer(object): | |
def __init__(self, rank, save): | |
self.rank = rank | |
if self.rank == 0: | |
self.writer = SummaryWriter(log_dir=save, flush_secs=20) | |
def add_scalar(self, *args, **kwargs): | |
if self.rank == 0: | |
self.writer.add_scalar(*args, **kwargs) | |
def add_figure(self, *args, **kwargs): | |
if self.rank == 0: | |
self.writer.add_figure(*args, **kwargs) | |
def add_image(self, *args, **kwargs): | |
if self.rank == 0: | |
self.writer.add_image(*args, **kwargs) | |
def add_histogram(self, *args, **kwargs): | |
if self.rank == 0: | |
self.writer.add_histogram(*args, **kwargs) | |
def add_histogram_if(self, write, *args, **kwargs): | |
if write and False: # Used for debugging. | |
self.add_histogram(*args, **kwargs) | |
def close(self, *args, **kwargs): | |
if self.rank == 0: | |
self.writer.close() | |
def common_init(rank, seed, save_dir): | |
# we use different seeds per gpu. But we sync the weights after model initialization. | |
torch.manual_seed(rank + seed) | |
np.random.seed(rank + seed) | |
torch.cuda.manual_seed(rank + seed) | |
torch.cuda.manual_seed_all(rank + seed) | |
torch.backends.cudnn.benchmark = True | |
# prepare logging and tensorboard summary | |
logging = Logger(rank, save_dir) | |
writer = Writer(rank, save_dir) | |
return logging, writer | |
def reduce_tensor(tensor, world_size): | |
rt = tensor.clone() | |
dist.all_reduce(rt, op=dist.ReduceOp.SUM) | |
rt /= world_size | |
return rt | |
def get_stride_for_cell_type(cell_type): | |
if cell_type.startswith('normal') or cell_type.startswith('combiner'): | |
stride = 1 | |
elif cell_type.startswith('down'): | |
stride = 2 | |
elif cell_type.startswith('up'): | |
stride = -1 | |
else: | |
raise NotImplementedError(cell_type) | |
return stride | |
def get_cout(cin, stride): | |
if stride == 1: | |
cout = cin | |
elif stride == -1: | |
cout = cin // 2 | |
elif stride == 2: | |
cout = 2 * cin | |
return cout | |
def kl_balancer_coeff(num_scales, groups_per_scale, fun): | |
if fun == 'equal': | |
coeff = torch.cat([torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() | |
elif fun == 'linear': | |
coeff = torch.cat([(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], | |
dim=0).cuda() | |
elif fun == 'sqrt': | |
coeff = torch.cat( | |
[np.sqrt(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], | |
dim=0).cuda() | |
elif fun == 'square': | |
coeff = torch.cat( | |
[np.square(2 ** i) / groups_per_scale[num_scales - i - 1] * torch.ones(groups_per_scale[num_scales - i - 1]) | |
for i in range(num_scales)], dim=0).cuda() | |
else: | |
raise NotImplementedError | |
# convert min to 1. | |
coeff /= torch.min(coeff) | |
return coeff | |
def kl_per_group(kl_all): | |
kl_vals = torch.mean(kl_all, dim=0) | |
kl_coeff_i = torch.abs(kl_all) | |
kl_coeff_i = torch.mean(kl_coeff_i, dim=0, keepdim=True) + 0.01 | |
return kl_coeff_i, kl_vals | |
def kl_balancer(kl_all, kl_coeff=1.0, kl_balance=False, alpha_i=None): | |
if kl_balance and kl_coeff < 1.0: | |
alpha_i = alpha_i.unsqueeze(0) | |
kl_all = torch.stack(kl_all, dim=1) | |
kl_coeff_i, kl_vals = kl_per_group(kl_all) | |
total_kl = torch.sum(kl_coeff_i) | |
kl_coeff_i = kl_coeff_i / alpha_i * total_kl | |
kl_coeff_i = kl_coeff_i / torch.mean(kl_coeff_i, dim=1, keepdim=True) | |
kl = torch.sum(kl_all * kl_coeff_i.detach(), dim=1) | |
# for reporting | |
kl_coeffs = kl_coeff_i.squeeze(0) | |
else: | |
kl_all = torch.stack(kl_all, dim=1) | |
kl_vals = torch.mean(kl_all, dim=0) | |
# kl = torch.sum(kl_all, dim=1) | |
# kl = torch.mean(kl_all, dim=1) | |
kl = torch.mean(kl_all) | |
kl_coeffs = torch.ones(size=(len(kl_vals),)) | |
return kl_coeff * kl, kl_coeffs, kl_vals | |
def kl_per_group_vada(all_log_q, all_neg_log_p): | |
assert len(all_log_q) == len(all_neg_log_p) | |
kl_all_list = [] | |
kl_diag = [] | |
for log_q, neg_log_p in zip(all_log_q, all_neg_log_p): | |
# kl_diag.append(torch.mean(torch.sum(neg_log_p + log_q, dim=[2, 3]), dim=0)) | |
kl_diag.append(torch.mean(torch.mean(neg_log_p + log_q, dim=[2, 3]), dim=0)) | |
# kl_all_list.append(torch.sum(neg_log_p + log_q, dim=[1, 2, 3])) | |
kl_all_list.append(torch.mean(neg_log_p + log_q, dim=[1, 2, 3])) | |
# kl_all = torch.stack(kl_all, dim=1) # batch x num_total_groups | |
kl_vals = torch.mean(torch.stack(kl_all_list, dim=1), dim=0) # mean per group | |
return kl_all_list, kl_vals, kl_diag | |
def kl_coeff(step, total_step, constant_step, min_kl_coeff, max_kl_coeff): | |
# return max(min(max_kl_coeff * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff) | |
return max(min(min_kl_coeff + (max_kl_coeff - min_kl_coeff) * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff) | |
def log_iw(decoder, x, log_q, log_p, crop=False): | |
recon = reconstruction_loss(decoder, x, crop) | |
return - recon - log_q + log_p | |
def reconstruction_loss(decoder, x, crop=False): | |
from util.distributions import DiscMixLogistic | |
recon = decoder.log_p(x) | |
if crop: | |
recon = recon[:, :, 2:30, 2:30] | |
if isinstance(decoder, DiscMixLogistic): | |
return - torch.sum(recon, dim=[1, 2]) # summation over RGB is done. | |
else: | |
return - torch.sum(recon, dim=[1, 2, 3]) | |
def vae_terms(all_log_q, all_eps): | |
from util.distributions import log_p_standard_normal | |
# compute kl | |
kl_all = [] | |
kl_diag = [] | |
log_p, log_q = 0., 0. | |
for log_q_conv, eps in zip(all_log_q, all_eps): | |
log_p_conv = log_p_standard_normal(eps) | |
kl_per_var = log_q_conv - log_p_conv | |
kl_diag.append(torch.mean(torch.sum(kl_per_var, dim=[2, 3]), dim=0)) | |
kl_all.append(torch.sum(kl_per_var, dim=[1, 2, 3])) | |
log_q += torch.sum(log_q_conv, dim=[1, 2, 3]) | |
log_p += torch.sum(log_p_conv, dim=[1, 2, 3]) | |
return log_q, log_p, kl_all, kl_diag | |
def sum_log_q(all_log_q): | |
log_q = 0. | |
for log_q_conv in all_log_q: | |
log_q += torch.sum(log_q_conv, dim=[1, 2, 3]) | |
return log_q | |
def cross_entropy_normal(all_eps): | |
from util.distributions import log_p_standard_normal | |
cross_entropy = 0. | |
neg_log_p_per_group = [] | |
for eps in all_eps: | |
neg_log_p_conv = - log_p_standard_normal(eps) | |
neg_log_p = torch.sum(neg_log_p_conv, dim=[1, 2, 3]) | |
cross_entropy += neg_log_p | |
neg_log_p_per_group.append(neg_log_p_conv) | |
return cross_entropy, neg_log_p_per_group | |
def tile_image(batch_image, n, m=None): | |
if m is None: | |
m = n | |
assert n * m == batch_image.size(0) | |
channels, height, width = batch_image.size(1), batch_image.size(2), batch_image.size(3) | |
batch_image = batch_image.view(n, m, channels, height, width) | |
batch_image = batch_image.permute(2, 0, 3, 1, 4) # n, height, n, width, c | |
batch_image = batch_image.contiguous().view(channels, n * height, m * width) | |
return batch_image | |
def average_gradients_naive(params, is_distributed): | |
""" Gradient averaging. """ | |
if is_distributed: | |
size = float(dist.get_world_size()) | |
for param in params: | |
if param.requires_grad: | |
param.grad.data /= size | |
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM) | |
def average_gradients(params, is_distributed): | |
""" Gradient averaging. """ | |
if is_distributed: | |
if isinstance(params, types.GeneratorType): | |
params = [p for p in params] | |
size = float(dist.get_world_size()) | |
grad_data = [] | |
grad_size = [] | |
grad_shapes = [] | |
# Gather all grad values | |
for param in params: | |
if param.requires_grad: | |
grad_size.append(param.grad.data.numel()) | |
grad_shapes.append(list(param.grad.data.shape)) | |
grad_data.append(param.grad.data.flatten()) | |
grad_data = torch.cat(grad_data).contiguous() | |
# All-reduce grad values | |
grad_data /= size | |
dist.all_reduce(grad_data, op=dist.ReduceOp.SUM) | |
# Put back the reduce grad values to parameters | |
base = 0 | |
for i, param in enumerate(params): | |
if param.requires_grad: | |
param.grad.data = grad_data[base:base + grad_size[i]].view(grad_shapes[i]) | |
base += grad_size[i] | |
def average_params(params, is_distributed): | |
""" parameter averaging. """ | |
if is_distributed: | |
size = float(dist.get_world_size()) | |
for param in params: | |
param.data /= size | |
dist.all_reduce(param.data, op=dist.ReduceOp.SUM) | |
def average_tensor(t, is_distributed): | |
if is_distributed: | |
size = float(dist.get_world_size()) | |
dist.all_reduce(t.data, op=dist.ReduceOp.SUM) | |
t.data /= size | |
def broadcast_params(params, is_distributed): | |
if is_distributed: | |
for param in params: | |
dist.broadcast(param.data, src=0) | |
def num_output(dataset): | |
if dataset in {'mnist', 'omniglot'}: | |
return 28 * 28 | |
elif dataset == 'cifar10': | |
return 3 * 32 * 32 | |
elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'): | |
size = int(dataset.split('_')[-1]) | |
return 3 * size * size | |
elif dataset == 'ffhq': | |
return 3 * 256 * 256 | |
else: | |
raise NotImplementedError | |
def get_input_size(dataset): | |
if dataset in {'mnist', 'omniglot'}: | |
return 32 | |
elif dataset == 'cifar10': | |
return 32 | |
elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'): | |
size = int(dataset.split('_')[-1]) | |
return size | |
elif dataset == 'ffhq': | |
return 256 | |
else: | |
raise NotImplementedError | |
def get_bpd_coeff(dataset): | |
n = num_output(dataset) | |
return 1. / np.log(2.) / n | |
def get_channel_multiplier(dataset, num_scales): | |
if dataset in {'cifar10', 'omniglot'}: | |
mult = (1, 1, 1) | |
elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}: | |
if num_scales == 3: | |
mult = (1, 1, 1) # used for prior at 16 | |
elif num_scales == 4: | |
mult = (1, 2, 2, 2) # used for prior at 32 | |
elif num_scales == 5: | |
mult = (1, 1, 2, 2, 2) # used for prior at 64 | |
elif dataset == 'mnist': | |
mult = (1, 1) | |
else: | |
raise NotImplementedError | |
return mult | |
def get_attention_scales(dataset): | |
if dataset in {'cifar10', 'omniglot'}: | |
attn = (True, False, False) | |
elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}: | |
# attn = (False, True, False, False) # used for 32 | |
attn = (False, False, True, False, False) # used for 64 | |
elif dataset == 'mnist': | |
attn = (True, False) | |
else: | |
raise NotImplementedError | |
return attn | |
def change_bit_length(x, num_bits): | |
if num_bits != 8: | |
x = torch.floor(x * 255 / 2 ** (8 - num_bits)) | |
x /= (2 ** num_bits - 1) | |
return x | |
def view4D(t, size, inplace=True): | |
""" | |
Equal to view(-1, 1, 1, 1).expand(size) | |
Designed because of this bug: | |
https://github.com/pytorch/pytorch/pull/48696 | |
""" | |
if inplace: | |
return t.unsqueeze_(-1).unsqueeze_(-1).unsqueeze_(-1).expand(size) | |
else: | |
return t.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(size) | |
def get_arch_cells(arch_type, use_se): | |
if arch_type == 'res_mbconv': | |
arch_cells = dict() | |
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se} | |
arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se} | |
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} | |
arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} | |
arch_cells['ar_nn'] = [''] | |
elif arch_type == 'res_bnswish': | |
arch_cells = dict() | |
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['up_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['normal_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['up_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['ar_nn'] = [''] | |
elif arch_type == 'res_bnswish2': | |
arch_cells = dict() | |
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} | |
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} | |
arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} | |
arch_cells['up_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} | |
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} | |
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} | |
arch_cells['normal_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} | |
arch_cells['up_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} | |
arch_cells['ar_nn'] = [''] | |
elif arch_type == 'res_mbconv_attn': | |
arch_cells = dict() | |
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish', ], 'se': use_se, 'attn_type': 'attn'} | |
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se, 'attn_type': 'attn'} | |
arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} | |
arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} | |
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} | |
arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} | |
arch_cells['ar_nn'] = [''] | |
elif arch_type == 'res_mbconv_attn_half': | |
arch_cells = dict() | |
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} | |
arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} | |
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} | |
arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} | |
arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} | |
arch_cells['ar_nn'] = [''] | |
else: | |
raise NotImplementedError | |
return arch_cells | |
def groups_per_scale(num_scales, num_groups_per_scale): | |
g = [] | |
n = num_groups_per_scale | |
for s in range(num_scales): | |
assert n >= 1 | |
g.append(n) | |
return g | |
class PositionalEmbedding(nn.Module): | |
def __init__(self, embedding_dim, scale): | |
super(PositionalEmbedding, self).__init__() | |
self.embedding_dim = embedding_dim | |
self.scale = scale | |
def forward(self, timesteps): | |
assert len(timesteps.shape) == 1 | |
timesteps = timesteps * self.scale | |
half_dim = self.embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim) * -emb) | |
emb = emb.to(device=timesteps.device) | |
emb = timesteps[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
return emb | |
class RandomFourierEmbedding(nn.Module): | |
def __init__(self, embedding_dim, scale): | |
super(RandomFourierEmbedding, self).__init__() | |
self.w = nn.Parameter(torch.randn(size=(1, embedding_dim // 2)) * scale, requires_grad=False) | |
def forward(self, timesteps): | |
emb = torch.mm(timesteps[:, None], self.w * 2 * 3.14159265359) | |
return torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
def init_temb_fun(embedding_type, embedding_scale, embedding_dim): | |
if embedding_type == 'positional': | |
temb_fun = PositionalEmbedding(embedding_dim, embedding_scale) | |
elif embedding_type == 'fourier': | |
temb_fun = RandomFourierEmbedding(embedding_dim, embedding_scale) | |
else: | |
raise NotImplementedError | |
return temb_fun | |
def get_dae_model(args, num_input_channels): | |
if args.dae_arch == 'ncsnpp': | |
# we need to import NCSNpp after processes are launched on the multi gpu training. | |
from score_sde.ncsnpp import NCSNpp | |
dae = NCSNpp(args, num_input_channels) | |
else: | |
raise NotImplementedError | |
return dae | |
def symmetrize_image_data(images): | |
return 2.0 * images - 1.0 | |
def unsymmetrize_image_data(images): | |
return (images + 1.) / 2. | |
def normalize_symmetric(images): | |
""" | |
Normalize images by dividing the largest intensity. Used for visualizing the intermediate steps. | |
""" | |
b = images.shape[0] | |
m, _ = torch.max(torch.abs(images).view(b, -1), dim=1) | |
images /= (m.view(b, 1, 1, 1) + 1e-3) | |
return images | |
def soft_clamp5(x: torch.Tensor): | |
return x.div(5.).tanh_().mul(5.) # 5. * torch.tanh(x / 5.) <--> soft differentiable clamp between [-5, 5] | |
def soft_clamp(x: torch.Tensor, a: torch.Tensor): | |
return x.div(a).tanh_().mul(a) | |
class SoftClamp5(nn.Module): | |
def __init__(self): | |
super(SoftClamp5, self).__init__() | |
def forward(self, x): | |
return soft_clamp5(x) | |
def override_architecture_fields(args, stored_args, logging): | |
# list of architecture parameters used in NVAE: | |
architecture_fields = ['arch_instance', 'num_nf', 'num_latent_scales', 'num_groups_per_scale', | |
'num_latent_per_group', 'num_channels_enc', 'num_preprocess_blocks', | |
'num_preprocess_cells', 'num_cell_per_cond_enc', 'num_channels_dec', | |
'num_postprocess_blocks', 'num_postprocess_cells', 'num_cell_per_cond_dec', | |
'decoder_dist', 'num_x_bits', 'log_sig_q_scale', | |
'progressive_input_vae', 'channel_mult'] | |
# backward compatibility | |
""" We have broken backward compatibility. No need to se these manually | |
if not hasattr(stored_args, 'log_sig_q_scale'): | |
logging.info('*** Setting %s manually ****', 'log_sig_q_scale') | |
setattr(stored_args, 'log_sig_q_scale', 5.) | |
if not hasattr(stored_args, 'latent_grad_cutoff'): | |
logging.info('*** Setting %s manually ****', 'latent_grad_cutoff') | |
setattr(stored_args, 'latent_grad_cutoff', 0.) | |
if not hasattr(stored_args, 'progressive_input_vae'): | |
logging.info('*** Setting %s manually ****', 'progressive_input_vae') | |
setattr(stored_args, 'progressive_input_vae', 'none') | |
if not hasattr(stored_args, 'progressive_output_vae'): | |
logging.info('*** Setting %s manually ****', 'progressive_output_vae') | |
setattr(stored_args, 'progressive_output_vae', 'none') | |
""" | |
if not hasattr(stored_args, 'num_x_bits'): | |
logging.info('*** Setting %s manually ****', 'num_x_bits') | |
setattr(stored_args, 'num_x_bits', 8) | |
if not hasattr(stored_args, 'channel_mult'): | |
logging.info('*** Setting %s manually ****', 'channel_mult') | |
setattr(stored_args, 'channel_mult', [1, 2]) | |
for f in architecture_fields: | |
if not hasattr(args, f) or getattr(args, f) != getattr(stored_args, f): | |
logging.info('Setting %s from loaded checkpoint', f) | |
setattr(args, f, getattr(stored_args, f)) | |
def init_processes(rank, size, fn, args): | |
""" Initialize the distributed environment. """ | |
os.environ['MASTER_ADDR'] = args.master_address | |
os.environ['MASTER_PORT'] = '6020' | |
torch.cuda.set_device(args.local_rank) | |
dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=size) | |
fn(args) | |
dist.barrier() | |
dist.destroy_process_group() | |
def sample_rademacher_like(y): | |
return torch.randint(low=0, high=2, size=y.shape, device='cuda') * 2 - 1 | |
def sample_gaussian_like(y): | |
return torch.randn_like(y, device='cuda') | |
def trace_df_dx_hutchinson(f, x, noise, no_autograd): | |
""" | |
Hutchinson's trace estimator for Jacobian df/dx, O(1) call to autograd | |
""" | |
if no_autograd: | |
# the following is compatible with checkpointing | |
torch.sum(f * noise).backward() | |
# torch.autograd.backward(tensors=[f], grad_tensors=[noise]) | |
jvp = x.grad | |
trJ = torch.sum(jvp * noise, dim=[1, 2, 3]) | |
x.grad = None | |
else: | |
jvp = torch.autograd.grad(f, x, noise, create_graph=False)[0] | |
trJ = torch.sum(jvp * noise, dim=[1, 2, 3]) | |
# trJ = torch.einsum('bijk,bijk->b', jvp, noise) # we could test if there's a speed difference in einsum vs sum | |
return trJ | |
def different_p_q_objectives(iw_sample_p, iw_sample_q): | |
assert iw_sample_p in ['ll_uniform', 'drop_all_uniform', 'll_iw', 'drop_all_iw', 'drop_sigma2t_iw', 'rescale_iw', | |
'drop_sigma2t_uniform'] | |
assert iw_sample_q in ['reweight_p_samples', 'll_uniform', 'll_iw'] | |
# In these cases, we reuse the likelihood-based p-objective (either the uniform sampling version or the importance | |
# sampling version) also for q. | |
if iw_sample_p in ['ll_uniform', 'll_iw'] and iw_sample_q == 'reweight_p_samples': | |
return False | |
# In these cases, we are using a non-likelihood-based objective for p, and hence definitly need to use another q | |
# objective. | |
else: | |
return True | |
# def decoder_output(dataset, logits, fixed_log_scales=None): | |
# if dataset in {'cifar10', 'celeba_64', 'celeba_256', 'imagenet_32', 'imagenet_64', 'ffhq', | |
# 'lsun_bedroom_128', 'lsun_bedroom_256', 'mnist', 'omniglot', | |
# 'lsun_church_256'}: | |
# return PixelNormal(logits, fixed_log_scales) | |
# else: | |
# raise NotImplementedError | |
def get_mixed_prediction(mixed_prediction, param, mixing_logit, mixing_component=None): | |
if mixed_prediction: | |
assert mixing_component is not None, 'Provide mixing component when mixed_prediction is enabled.' | |
coeff = torch.sigmoid(mixing_logit) | |
param = (1 - coeff) * mixing_component + coeff * param | |
return param | |
def set_vesde_sigma_max(args, vae, train_queue, logging, is_distributed): | |
logging.info('') | |
logging.info('Calculating max. pairwise distance in latent space to set sigma2_max for VESDE...') | |
eps_list = [] | |
vae.eval() | |
for step, x in enumerate(train_queue): | |
x = x[0] if len(x) > 1 else x | |
x = x.cuda() | |
x = symmetrize_image_data(x) | |
# run vae | |
with autocast(enabled=args.autocast_train): | |
with torch.set_grad_enabled(False): | |
logits, all_log_q, all_eps = vae(x) | |
eps = torch.cat(all_eps, dim=1) | |
eps_list.append(eps.detach()) | |
# concat eps tensor on each GPU and then gather all on all GPUs | |
eps_this_rank = torch.cat(eps_list, dim=0) | |
if is_distributed: | |
eps_all_gathered = [torch.zeros_like(eps_this_rank)] * dist.get_world_size() | |
dist.all_gather(eps_all_gathered, eps_this_rank) | |
eps_full = torch.cat(eps_all_gathered, dim=0) | |
else: | |
eps_full = eps_this_rank | |
# max pairwise distance squared between all latent encodings, is computed on CPU | |
eps_full = eps_full.cpu().float() | |
eps_full = eps_full.flatten(start_dim=1).unsqueeze(0) | |
max_pairwise_dist_sqr = torch.cdist(eps_full, eps_full).square().max() | |
max_pairwise_dist_sqr = max_pairwise_dist_sqr.cuda() | |
# to be safe, we broadcast to all GPUs if we are in distributed environment. Shouldn't be necessary in principle. | |
if is_distributed: | |
dist.broadcast(max_pairwise_dist_sqr, src=0) | |
args.sigma2_max = max_pairwise_dist_sqr.item() | |
logging.info('Done! Set args.sigma2_max set to {}'.format(args.sigma2_max)) | |
logging.info('') | |
return args | |
def mask_inactive_variables(x, is_active): | |
x = x * is_active | |
return x | |
def common_x_operations(x, num_x_bits): | |
x = x[0] if len(x) > 1 else x | |
x = x.cuda() | |
# change bit length | |
x = change_bit_length(x, num_x_bits) | |
x = symmetrize_image_data(x) | |
return x | |