Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This code started out as a PyTorch port of Ho et al's diffusion models: | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py | |
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. | |
""" | |
from pdb import set_trace as st | |
import enum | |
import math | |
import numpy as np | |
import torch as th | |
from .nn import mean_flat | |
from .losses import normal_kl, discretized_gaussian_log_likelihood | |
from . import dist_util | |
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): | |
""" | |
Get a pre-defined beta schedule for the given name. | |
The beta schedule library consists of beta schedules which remain similar | |
in the limit of num_diffusion_timesteps. | |
Beta schedules may be added, but should not be removed or changed once | |
they are committed to maintain backwards compatibility. | |
""" | |
if schedule_name == "linear": # * used here | |
# Linear schedule from Ho et al, extended to work for any number of | |
# diffusion steps. | |
scale = 1000 / num_diffusion_timesteps | |
beta_start = scale * 0.0001 | |
beta_end = scale * 0.02 | |
return np.linspace(beta_start, | |
beta_end, | |
num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "linear_simple": | |
return betas_for_alpha_bar_linear_simple(num_diffusion_timesteps, | |
lambda t: 0.001 / (1.001 - t)) | |
elif schedule_name == "cosine": | |
return betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2)**2, | |
) | |
else: | |
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
def betas_for_alpha_bar_linear_simple(num_diffusion_timesteps, | |
alpha_bar, | |
max_beta=0.999): | |
"""proposed by Chen Ting, on the importance of noise schedule, arXiv 2023. | |
gamma = 1-t | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t = i / num_diffusion_timesteps | |
betas.append(min(max_beta, alpha_bar(t))) | |
return betas | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
:param num_diffusion_timesteps: the number of betas to produce. | |
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
produces the cumulative product of (1-beta) up to that | |
part of the diffusion process. | |
:param max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return np.array(betas) | |
class ModelMeanType(enum.Enum): | |
""" | |
Which type of output the model predicts. | |
""" | |
PREVIOUS_X = enum.auto() # the model predicts x_{t-1} | |
START_X = enum.auto() # the model predicts x_0 | |
EPSILON = enum.auto() # the model predicts epsilon | |
V = enum.auto() # the model predicts velosity | |
class ModelVarType(enum.Enum): | |
""" | |
What is used as the model's output variance. | |
The LEARNED_RANGE option has been added to allow the model to predict | |
values between FIXED_SMALL and FIXED_LARGE, making its job easier. | |
""" | |
LEARNED = enum.auto() | |
FIXED_SMALL = enum.auto() | |
FIXED_LARGE = enum.auto() | |
LEARNED_RANGE = enum.auto() | |
class LossType(enum.Enum): | |
MSE = enum.auto() # use raw MSE loss (and KL when learning variances) | |
RESCALED_MSE = ( | |
enum.auto() | |
) # use raw MSE loss (with RESCALED_KL when learning variances) | |
KL = enum.auto() # use the variational lower-bound | |
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB | |
def is_vb(self): | |
return self == LossType.KL or self == LossType.RESCALED_KL | |
class GaussianDiffusion: | |
""" | |
Utilities for training and sampling diffusion models. | |
Ported directly from here, and then adapted over time to further experimentation. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 | |
:param betas: a 1-D numpy array of betas for each diffusion timestep, | |
starting at T and going to 1. | |
:param model_mean_type: a ModelMeanType determining what the model outputs. | |
:param model_var_type: a ModelVarType determining how variance is output. | |
:param loss_type: a LossType determining the loss function to use. | |
:param rescale_timesteps: if True, pass floating point timesteps into the | |
model so that they are always scaled like in the | |
original paper (0 to 1000). | |
""" | |
''' | |
defaults: | |
learn_sigma=False, | |
diffusion_steps=1000, | |
noise_schedule="linear", | |
timestep_respacing="", | |
use_kl=False, | |
predict_xstart=False, | |
rescale_timesteps=False, | |
rescale_learned_sigmas=False, | |
''' | |
def __init__( | |
self, | |
*, | |
betas, | |
model_mean_type, | |
model_var_type, | |
loss_type, | |
rescale_timesteps=False, | |
standarization_xt=False, | |
): | |
self.model_mean_type = model_mean_type | |
self.model_var_type = model_var_type | |
self.loss_type = loss_type | |
self.rescale_timesteps = rescale_timesteps | |
self.standarization_xt = standarization_xt | |
# Use float64 for accuracy. | |
betas = np.array(betas, dtype=np.float64) | |
self.betas = betas | |
assert len(betas.shape) == 1, "betas must be 1-D" | |
assert (betas > 0).all() and (betas <= 1).all() | |
self.num_timesteps = int(betas.shape[0]) | |
alphas = 1.0 - betas | |
self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
assert self.alphas_cumprod_prev.shape == (self.num_timesteps, ) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
self.sqrt_recipm1_alphas_cumprod = np.sqrt( | |
1.0 / self.alphas_cumprod - | |
1) # sqrt(1/cumprod(alphas) - 1), for calculating x_0 from x_t | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
self.posterior_variance = (betas * (1.0 - self.alphas_cumprod_prev) / | |
(1.0 - self.alphas_cumprod)) | |
# log calculation clipped because the posterior variance is 0 at the | |
# beginning of the diffusion chain. | |
self.posterior_log_variance_clipped = np.log( | |
np.append(self.posterior_variance[1], self.posterior_variance[1:])) | |
self.posterior_mean_coef1 = (betas * | |
np.sqrt(self.alphas_cumprod_prev) / | |
(1.0 - self.alphas_cumprod)) | |
self.posterior_mean_coef2 = ((1.0 - self.alphas_cumprod_prev) * | |
np.sqrt(alphas) / | |
(1.0 - self.alphas_cumprod)) | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = ( | |
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * | |
x_start) | |
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, | |
x_start.shape) | |
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, | |
t, x_start.shape) | |
return mean, variance, log_variance | |
def q_sample(self, x_start, t, noise=None, return_detail=False): | |
""" | |
Diffuse the data for a given number of diffusion steps. | |
In other words, sample from q(x_t | x_0). | |
:param x_start: the initial data batch. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:param noise: if specified, the split-out normal noise. | |
:return: A noisy version of x_start. | |
""" | |
if noise is None: | |
noise = th.randn_like(x_start) | |
assert noise.shape == x_start.shape | |
alpha_bar = _extract_into_tensor(self.sqrt_alphas_cumprod, t, | |
x_start.shape) | |
one_minus_alpha_bar = _extract_into_tensor( | |
self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
xt = (alpha_bar * x_start + one_minus_alpha_bar * noise) | |
if self.standarization_xt: | |
xt = xt / (1e-5 + xt.std(dim=list(range(1, xt.ndim)), keepdim=True) | |
) # B 1 1 1 # | |
if return_detail: | |
return xt, alpha_bar, one_minus_alpha_bar | |
return xt | |
def q_posterior_mean_variance(self, x_start, x_t, t): | |
""" | |
Compute the mean and variance of the diffusion posterior: | |
q(x_{t-1} | x_t, x_0) | |
""" | |
assert x_start.shape == x_t.shape | |
posterior_mean = ( | |
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * | |
x_start + | |
_extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * | |
x_t) | |
posterior_variance = _extract_into_tensor(self.posterior_variance, t, | |
x_t.shape) | |
posterior_log_variance_clipped = _extract_into_tensor( | |
self.posterior_log_variance_clipped, t, x_t.shape) | |
assert (posterior_mean.shape[0] == posterior_variance.shape[0] == | |
posterior_log_variance_clipped.shape[0] == x_start.shape[0]) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, | |
model, | |
x, | |
t, | |
c=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
model_kwargs=None, | |
mixing_normal=False, | |
direct_return_model_output=False): | |
""" | |
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of | |
the initial x, x_0. | |
:param model: the model, which takes a signal and a batch of timesteps | |
as input. | |
:param x: the [N x C x ...] tensor at time t. | |
:param t: a 1-D Tensor of timesteps. | |
:param clip_denoised: if True, clip the denoised signal into [-1, 1]. | |
:param denoised_fn: if not None, a function which applies to the | |
x_start prediction before it is used to sample. Applies before | |
clip_denoised. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:return: a dict with the following keys: | |
- 'mean': the model mean output. | |
- 'variance': the model variance output. | |
- 'log_variance': the log of 'variance'. | |
- 'pred_xstart': the prediction for x_0. | |
""" | |
# lazy import to avoid partially initialized import | |
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction | |
if model_kwargs is None: | |
model_kwargs = {} | |
# if mixing_normal is not None: | |
# t = t / self.num_timesteps # [0,1] for SDE diffusion | |
B, C = x.shape[:2] | |
assert t.shape == (B, ) | |
model_output = model(x, | |
self._scale_timesteps(t), | |
c=c, | |
mixing_normal=mixing_normal, | |
**model_kwargs) | |
if direct_return_model_output: | |
return model_output | |
if self.model_mean_type == ModelMeanType.V: | |
v_transformed_to_eps_flag = False | |
# st() | |
if mixing_normal: # directly change the model predicted eps logits | |
if self.model_mean_type == ModelMeanType.START_X: | |
mixing_component = self.get_mixing_component_x0(x, | |
t, | |
enabled=True) | |
else: | |
assert self.model_mean_type in [ | |
ModelMeanType.EPSILON, ModelMeanType.V | |
] | |
mixing_component = self.get_mixing_component(x, | |
t, | |
enabled=True) | |
if self.model_mean_type == ModelMeanType.V: | |
model_output = self._predict_eps_from_z_and_v( | |
x, t, model_output) | |
v_transformed_to_eps_flag = True | |
# ! transform result to v first? | |
# model_output = | |
model_output = get_mixed_prediction(True, model_output, | |
model.mixing_logit, | |
mixing_component) | |
if self.model_var_type in [ | |
ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE | |
]: | |
assert model_output.shape == (B, C * 2, *x.shape[2:]) | |
model_output, model_var_values = th.split(model_output, C, dim=1) | |
if self.model_var_type == ModelVarType.LEARNED: | |
model_log_variance = model_var_values | |
model_variance = th.exp(model_log_variance) | |
else: | |
min_log = _extract_into_tensor( | |
self.posterior_log_variance_clipped, t, x.shape) | |
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) | |
# The model_var_values is [-1, 1] for [min_var, max_var]. | |
frac = (model_var_values + 1) / 2 | |
model_log_variance = frac * max_log + (1 - frac) * min_log | |
model_variance = th.exp(model_log_variance) | |
else: | |
model_variance, model_log_variance = { | |
# for fixedlarge, we set the initial (log-)variance like so | |
# to get a better decoder log likelihood. | |
# ? | |
ModelVarType.FIXED_LARGE: ( # * used here | |
np.append(self.posterior_variance[1], self.betas[1:]), | |
np.log( | |
np.append(self.posterior_variance[1], self.betas[1:])), | |
), | |
ModelVarType.FIXED_SMALL: ( | |
self.posterior_variance, | |
self.posterior_log_variance_clipped, | |
), | |
}[self.model_var_type] | |
model_variance = _extract_into_tensor(model_variance, t, x.shape) | |
model_log_variance = _extract_into_tensor(model_log_variance, t, | |
x.shape) | |
def process_xstart(x): | |
if denoised_fn is not None: | |
x = denoised_fn(x) | |
if clip_denoised: | |
return x.clamp(-1, 1) | |
return x | |
if self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
pred_xstart = process_xstart( | |
self._predict_xstart_from_xprev(x_t=x, t=t, | |
xprev=model_output)) | |
model_mean = model_output | |
elif self.model_mean_type in [ | |
ModelMeanType.START_X, ModelMeanType.EPSILON, ModelMeanType.V | |
]: | |
if self.model_mean_type == ModelMeanType.START_X: | |
pred_xstart = process_xstart(model_output) | |
else: # * used here | |
if self.model_mean_type == ModelMeanType.V: | |
assert v_transformed_to_eps_flag # type: ignore | |
pred_xstart = process_xstart( # * return the x_0 using self._predict_xstart_from_eps as the denoised_fn | |
self._predict_xstart_from_eps(x_t=x, t=t, | |
eps=model_output)) | |
model_mean, _, _ = self.q_posterior_mean_variance( | |
x_start=pred_xstart, x_t=x, t=t) | |
else: | |
raise NotImplementedError(self.model_mean_type) | |
assert (model_mean.shape == model_log_variance.shape == | |
pred_xstart.shape == x.shape) | |
return { | |
"mean": model_mean, | |
"variance": model_variance, | |
"log_variance": model_log_variance, | |
"pred_xstart": pred_xstart, | |
} | |
def _predict_xstart_from_eps(self, x_t, t, eps): | |
assert x_t.shape == eps.shape | |
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, | |
x_t.shape) * x_t - | |
_extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, | |
x_t.shape) * eps) | |
def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
assert x_t.shape == xprev.shape | |
return ( # (xprev - coef2*x_t) / coef1 | |
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) | |
* xprev - _extract_into_tensor( | |
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, | |
x_t.shape) * x_t) | |
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, | |
x_t.shape) * x_t - | |
pred_xstart) / _extract_into_tensor( | |
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
# https://github.com/Stability-AI/stablediffusion/blob/cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf/ldm/models/diffusion/ddpm.py#L288 | |
def _predict_start_from_z_and_v(self, x_t, t, v): | |
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
return (_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * | |
x_t - _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, | |
t, x_t.shape) * v) | |
def _predict_eps_from_z_and_v(self, x_t, t, v): | |
return ( | |
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v + | |
_extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, | |
x_t.shape) * x_t) | |
def _scale_timesteps(self, t): | |
if self.rescale_timesteps: | |
return t.float() * (1000.0 / self.num_timesteps) | |
return t | |
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
""" | |
Compute the mean for the previous step, given a function cond_fn that | |
computes the gradient of a conditional log probability with respect to | |
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to | |
condition on y. | |
This uses the conditioning strategy from Sohl-Dickstein et al. (2015). | |
""" | |
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) | |
new_mean = (p_mean_var["mean"].float() + | |
p_mean_var["variance"] * gradient.float()) | |
return new_mean | |
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
""" | |
Compute what the p_mean_variance output would have been, should the | |
model's score function be conditioned by cond_fn. | |
See condition_mean() for details on cond_fn. | |
Unlike condition_mean(), this instead uses the conditioning strategy | |
from Song et al (2020). | |
""" | |
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) | |
eps = eps - (1 - alpha_bar).sqrt() * cond_fn( | |
x, self._scale_timesteps(t), **model_kwargs) | |
out = p_mean_var.copy() | |
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) | |
out["mean"], _, _ = self.q_posterior_mean_variance( | |
x_start=out["pred_xstart"], x_t=x, t=t) | |
return out | |
def p_sample( | |
self, | |
model, | |
x, | |
t, | |
cond=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
mixing_normal=False, | |
): | |
""" | |
Sample x_{t-1} from the model at the given timestep. | |
:param model: the model to sample from. | |
:param x: the current tensor at x_{t-1}. | |
:param t: the value of t, starting at 0 for the first diffusion step. | |
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
:param denoised_fn: if not None, a function which applies to the | |
x_start prediction before it is used to sample. | |
:param cond_fn: if not None, this is a gradient function that acts | |
similarly to the model. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:return: a dict containing the following keys: | |
- 'sample': a random sample from the model. | |
- 'pred_xstart': a prediction of x_0. | |
""" | |
out = self.p_mean_variance(model, | |
x, | |
t, | |
c=cond, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
mixing_normal=mixing_normal) | |
noise = th.randn_like(x) | |
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
) # no noise when t == 0 | |
if cond_fn is not None: | |
out["mean"] = self.condition_mean(cond_fn, | |
out, | |
x, | |
t, | |
model_kwargs=model_kwargs) | |
sample = out["mean"] + nonzero_mask * th.exp( | |
0.5 * out["log_variance"]) * noise | |
return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
def get_mixing_component(self, x_noisy, t, enabled): | |
# alpha_bars = th.gather(self._alpha_bars, 0, timestep-1) | |
if enabled: | |
# one_minus_alpha_bars_sqrt = utils.view4D(th.sqrt(1.0 - alpha_bars), size) | |
one_minus_alpha_bars_sqrt = _extract_into_tensor( | |
self.sqrt_one_minus_alphas_cumprod, t, x_noisy.shape) | |
mixing_component = one_minus_alpha_bars_sqrt * x_noisy | |
else: | |
mixing_component = None | |
return mixing_component | |
def get_mixing_component_x0(self, x_noisy, t, enabled): | |
# alpha_bars = th.gather(self._alpha_bars, 0, timestep-1) | |
if enabled: | |
# one_minus_alpha_bars_sqrt = utils.view4D(th.sqrt(1.0 - alpha_bars), size) | |
one_minus_alpha_bars_sqrt = _extract_into_tensor( | |
self.sqrt_alphas_cumprod, t, x_noisy.shape) | |
mixing_component = one_minus_alpha_bars_sqrt * x_noisy | |
else: | |
mixing_component = None | |
return mixing_component | |
def p_sample_mixing_component( | |
self, | |
model, | |
x, | |
t, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
): | |
""" | |
Sample x_{t-1} from the model at the given timestep. | |
:param model: the model to sample from. | |
:param x: the current tensor at x_{t-1}. | |
:param t: the value of t, starting at 0 for the first diffusion step. | |
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
:param denoised_fn: if not None, a function which applies to the | |
x_start prediction before it is used to sample. | |
:param cond_fn: if not None, this is a gradient function that acts | |
similarly to the model. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:return: a dict containing the following keys: | |
- 'sample': a random sample from the model. | |
- 'pred_xstart': a prediction of x_0. | |
""" | |
assert self.model_mean_type == ModelMeanType.EPSILON, 'currently LSGM only implemented for EPSILON prediction' | |
out = self.p_mean_variance( | |
model, | |
x, | |
t / self. | |
num_timesteps, # trained on SDE diffusion, normalize steps to (0,1] | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
) | |
# mixing_component = self.get_mixing_component(x, t, enabled=True) | |
# out['mean'] = get_mixed_prediction(model.mixed_prediction, out['mean'], model.mixing_logit, mixing_component) | |
noise = th.randn_like(x) | |
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
) # no noise when t == 0 | |
if cond_fn is not None: | |
out["mean"] = self.condition_mean(cond_fn, | |
out, | |
x, | |
t, | |
model_kwargs=model_kwargs) | |
sample = out["mean"] + nonzero_mask * th.exp( | |
0.5 * out["log_variance"]) * noise | |
return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
def p_sample_loop( | |
self, | |
model, | |
shape, | |
cond=None, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
mixing_normal=False, | |
): | |
""" | |
Generate samples from the model. | |
:param model: the model module. | |
:param shape: the shape of the samples, (N, C, H, W). | |
:param noise: if specified, the noise from the encoder to sample. | |
Should be of the same shape as `shape`. | |
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. | |
:param denoised_fn: if not None, a function which applies to the | |
x_start prediction before it is used to sample. | |
:param cond_fn: if not None, this is a gradient function that acts | |
similarly to the model. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:param device: if specified, the device to create the samples on. | |
If not specified, use a model parameter's device. | |
:param progress: if True, show a tqdm progress bar. | |
:return: a non-differentiable batch of samples. | |
""" | |
final = None | |
for sample in self.p_sample_loop_progressive( | |
model, | |
shape, | |
cond=cond, | |
noise=noise, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=model_kwargs, | |
device=device, | |
progress=progress, | |
mixing_normal=mixing_normal): | |
final = sample | |
return final["sample"] | |
def p_sample_loop_progressive( | |
self, | |
model, | |
shape, | |
cond=None, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
mixing_normal=False, | |
): | |
""" | |
Generate samples from the model and yield intermediate samples from | |
each timestep of diffusion. | |
Arguments are the same as p_sample_loop(). | |
Returns a generator over dicts, where each dict is the return value of | |
p_sample(). | |
""" | |
if device is None: | |
device = dist_util.dev() | |
# device = next(model.parameters()).device | |
assert isinstance(shape, (tuple, list)) | |
if noise is not None: | |
img = noise | |
else: | |
img = th.randn(*shape, device=device) | |
indices = list(range(self.num_timesteps))[::-1] | |
if progress: | |
# Lazy import so that we don't depend on tqdm. | |
from tqdm.auto import tqdm | |
indices = tqdm(indices) | |
for i in indices: | |
t = th.tensor([i] * shape[0], device=device) | |
with th.no_grad(): | |
out = self.p_sample(model, | |
img, | |
t, | |
cond=cond, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=model_kwargs, | |
mixing_normal=mixing_normal) | |
yield out | |
img = out["sample"] | |
def ddim_sample( | |
self, | |
model, | |
x, | |
t, | |
cond=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
eta=0.0, | |
unconditional_guidance_scale=1., | |
unconditional_conditioning=None, | |
mixing_normal=False, | |
objv_inference=False, | |
): | |
""" | |
Sample x_{t-1} from the model using DDIM. | |
Same usage as p_sample(). | |
""" | |
if unconditional_guidance_scale != 1.0: | |
assert cond is not None | |
if unconditional_conditioning is None: | |
unconditional_conditioning = th.zeros_like( | |
cond['c_crossattn'] | |
) # ImageEmbedding adopts zero as the null embedding | |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: | |
# e_t = self.model.apply_model(x, t, c) | |
out = self.p_mean_variance( | |
model, | |
x, | |
t, | |
c=cond, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
mixing_normal=mixing_normal, | |
) | |
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
elif objv_inference: | |
assert cond is not None | |
x_in = th.cat([x] * 2) | |
t_in = th.cat([t] * 2) | |
c_in = {} | |
for k in cond: | |
c_in[k] = th.cat([ | |
unconditional_conditioning[k].repeat_interleave( | |
cond[k].shape[0], 0), cond[k] | |
]) | |
model_uncond, model_t = self.p_mean_variance( | |
model, | |
x_in, | |
t_in, | |
c=c_in, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
mixing_normal=mixing_normal, | |
direct_return_model_output=True, # ! compat with _wrapper | |
).chunk(2) | |
# Usually our model outputs epsilon, but we re-derive it | |
# model_uncond, model_t = model(x_in, self._scale_timesteps(t_in), c=c_in, mixing_normal=mixing_normal, **model_kwargs).chunk(2) | |
# in case we used x_start or x_prev prediction. | |
# st() | |
# ! guidance | |
# e_t_uncond, e_t = eps.chunk(2) | |
model_out = model_uncond + unconditional_guidance_scale * ( | |
model_t - model_uncond) | |
if self.model_mean_type == ModelMeanType.V: | |
eps = self._predict_eps_from_z_and_v(x, t, model_out) | |
# eps = self._predict_eps_from_xstart(x_in, t_in, out["pred_xstart"]) | |
else: | |
assert cond is not None | |
x_in = th.cat([x] * 2) | |
t_in = th.cat([t] * 2) | |
c_in = { | |
'c_crossattn': | |
th.cat([ | |
unconditional_conditioning.repeat_interleave( | |
cond['c_crossattn'].shape[0], dim=0), | |
cond['c_crossattn'] | |
]) | |
} | |
# c_in = {} | |
# for k in cond: | |
# c_in[k] = th.cat([unconditional_conditioning[k], cond[k]]) | |
out = self.p_mean_variance( | |
model, | |
x_in, | |
t_in, | |
c=c_in, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
mixing_normal=mixing_normal, | |
) | |
# Usually our model outputs epsilon, but we re-derive it | |
# in case we used x_start or x_prev prediction. | |
eps = self._predict_eps_from_xstart(x_in, t_in, out["pred_xstart"]) | |
# ! guidance | |
e_t_uncond, e_t = eps.chunk(2) | |
# st() | |
eps = e_t_uncond + unconditional_guidance_scale * (e_t - | |
e_t_uncond) | |
if cond_fn is not None: | |
out = self.condition_score(cond_fn, | |
out, | |
x, | |
t, | |
model_kwargs=model_kwargs) | |
# eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
# ! re-derive xstart | |
pred_x0 = self._predict_xstart_from_eps(x, t, eps) | |
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, | |
x.shape) | |
sigma = (eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * | |
th.sqrt(1 - alpha_bar / alpha_bar_prev)) | |
# Equation 12. | |
noise = th.randn_like(x) | |
mean_pred = (pred_x0 * th.sqrt(alpha_bar_prev) + | |
th.sqrt(1 - alpha_bar_prev - sigma**2) * eps) | |
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
) # no noise when t == 0 | |
sample = mean_pred + nonzero_mask * sigma * noise | |
return {"sample": sample, "pred_xstart": pred_x0} | |
def ddim_reverse_sample( | |
self, | |
model, | |
x, | |
t, | |
clip_denoised=True, | |
denoised_fn=None, | |
model_kwargs=None, | |
eta=0.0, | |
): | |
""" | |
Sample x_{t+1} from the model using DDIM reverse ODE. | |
""" | |
assert eta == 0.0, "Reverse ODE only for deterministic path" | |
out = self.p_mean_variance( | |
model, | |
x, | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
) | |
# Usually our model outputs epsilon, but we re-derive it | |
# in case we used x_start or x_prev prediction. | |
eps = (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) | |
* x - out["pred_xstart"]) / _extract_into_tensor( | |
self.sqrt_recipm1_alphas_cumprod, t, x.shape) | |
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, | |
x.shape) | |
# Equation 12. reversed | |
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_next) + | |
th.sqrt(1 - alpha_bar_next) * eps) | |
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} | |
def ddim_sample_loop( | |
self, | |
model, | |
shape, | |
cond=None, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
eta=0.0, | |
mixing_normal=False, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
objv_inference=False, | |
): | |
""" | |
Generate samples from the model using DDIM. | |
Same usage as p_sample_loop(). | |
""" | |
final = None | |
for sample in self.ddim_sample_loop_progressive( | |
model, | |
shape, | |
cond=cond, | |
noise=noise, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=model_kwargs, | |
device=device, | |
progress=progress, | |
eta=eta, | |
mixing_normal=mixing_normal, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
objv_inference=objv_inference, | |
): | |
final = sample | |
return final["sample"] | |
def ddim_sample_loop_progressive( | |
self, | |
model, | |
shape, | |
cond=None, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
eta=0.0, | |
mixing_normal=False, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
objv_inference=False, | |
): | |
""" | |
Use DDIM to sample from the model and yield intermediate samples from | |
each timestep of DDIM. | |
Same usage as p_sample_loop_progressive(). | |
""" | |
if device is None: | |
device = next(model.parameters()).device | |
assert isinstance(shape, (tuple, list)) | |
if noise is not None: | |
img = noise | |
else: | |
img = th.randn(*shape, device=device) | |
indices = list(range(self.num_timesteps))[::-1] | |
if progress: | |
# Lazy import so that we don't depend on tqdm. | |
from tqdm.auto import tqdm | |
indices = tqdm(indices) | |
for i in indices: | |
t = th.tensor([i] * shape[0], device=device) | |
with th.no_grad(): | |
out = self.ddim_sample( | |
model, | |
img, | |
t, | |
cond=cond, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=model_kwargs, | |
eta=eta, | |
mixing_normal=mixing_normal, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
objv_inference=objv_inference, | |
) | |
yield out | |
img = out["sample"] | |
def _vb_terms_bpd(self, | |
model, | |
x_start, | |
x_t, | |
t, | |
clip_denoised=True, | |
model_kwargs=None): | |
""" | |
Get a term for the variational lower-bound. | |
The resulting units are bits (rather than nats, as one might expect). | |
This allows for comparison to other papers. | |
:return: a dict with the following keys: | |
- 'output': a shape [N] tensor of NLLs or KLs. | |
- 'pred_xstart': the x_0 predictions. | |
""" | |
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( | |
x_start=x_start, x_t=x_t, t=t) | |
out = self.p_mean_variance(model, | |
x_t, | |
t, | |
clip_denoised=clip_denoised, | |
model_kwargs=model_kwargs) | |
kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"], | |
out["log_variance"]) | |
kl = mean_flat(kl) / np.log(2.0) | |
decoder_nll = -discretized_gaussian_log_likelihood( | |
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]) | |
assert decoder_nll.shape == x_start.shape | |
decoder_nll = mean_flat(decoder_nll) / np.log(2.0) | |
# At the first timestep return the decoder NLL, | |
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) | |
output = th.where((t == 0), decoder_nll, kl) | |
return {"output": output, "pred_xstart": out["pred_xstart"]} | |
def training_losses(self, | |
model, | |
x_start, | |
t, | |
model_kwargs=None, | |
noise=None, | |
return_detail=False): | |
""" | |
Compute training losses for a single timestep. | |
:param model: the model to evaluate loss on. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:param t: a batch of timestep indices. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:param noise: if specified, the specific Gaussian noise to try to remove. | |
:return: a dict with the key "loss" containing a tensor of shape [N]. | |
Some mean or variance settings may also have other keys. | |
""" | |
if model_kwargs is None: # * micro_cond | |
model_kwargs = {} | |
if noise is None: | |
noise = th.randn_like(x_start) # x_start is the x0 image | |
x_t = self.q_sample(x_start, | |
t, | |
noise=noise, | |
return_detail=return_detail | |
) # * add noise according to predefined schedule | |
if return_detail: | |
x_t, alpha_bar, _ = x_t | |
# terms = {} | |
terms = {"x_t": x_t} | |
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: | |
terms["loss"] = self._vb_terms_bpd( | |
model=model, | |
x_start=x_start, | |
x_t=x_t, | |
t=t, | |
clip_denoised=False, | |
model_kwargs=model_kwargs, | |
)["output"] | |
if self.loss_type == LossType.RESCALED_KL: | |
terms["loss"] *= self.num_timesteps | |
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: | |
model_output = model( | |
x_t, self._scale_timesteps(t), **model_kwargs | |
) # directly predict epsilon or x_0; no learned sigma | |
if self.model_var_type in [ | |
ModelVarType.LEARNED, | |
ModelVarType.LEARNED_RANGE, | |
]: | |
B, C = x_t.shape[:2] | |
assert model_output.shape == (B, C * 2, *x_t.shape[2:]) | |
model_output, model_var_values = th.split(model_output, | |
C, | |
dim=1) | |
# Learn the variance using the variational bound, but don't let | |
# it affect our mean prediction. | |
frozen_out = th.cat([model_output.detach(), model_var_values], | |
dim=1) | |
terms["vb"] = self._vb_terms_bpd( | |
model=lambda *args, r=frozen_out: r, | |
x_start=x_start, | |
x_t=x_t, | |
t=t, | |
clip_denoised=False, | |
)["output"] | |
if self.loss_type == LossType.RESCALED_MSE: | |
# Divide by 1000 for equivalence with initial implementation. | |
# Without a factor of 1/1000, the VB term hurts the MSE term. | |
terms["vb"] *= self.num_timesteps / 1000.0 | |
target = { | |
ModelMeanType.PREVIOUS_X: | |
self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, | |
t=t)[0], | |
ModelMeanType.START_X: | |
x_start, | |
ModelMeanType.EPSILON: | |
noise, | |
}[self.model_mean_type] # ModelMeanType.EPSILON | |
# st() | |
assert model_output.shape == target.shape == x_start.shape | |
terms["mse"] = mean_flat((target - model_output)**2) | |
terms['model_output'] = model_output | |
# terms['target'] = target # TODO, flag. | |
if return_detail: | |
terms.update({ | |
'diffusion_target': target, | |
'alpha_bar': alpha_bar, | |
# 'one_minus_alpha':one_minus_alpha | |
# 'noise': noise | |
}) | |
if "vb" in terms: | |
terms["loss"] = terms["mse"] + terms["vb"] | |
else: | |
terms["loss"] = terms["mse"] | |
else: | |
raise NotImplementedError(self.loss_type) | |
return terms | |
def _prior_bpd(self, x_start): | |
""" | |
Get the prior KL term for the variational lower-bound, measured in | |
bits-per-dim. | |
This term can't be optimized, as it only depends on the encoder. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:return: a batch of [N] KL values (in bits), one per batch element. | |
""" | |
batch_size = x_start.shape[0] | |
t = th.tensor([self.num_timesteps - 1] * batch_size, | |
device=x_start.device) | |
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
kl_prior = normal_kl(mean1=qt_mean, | |
logvar1=qt_log_variance, | |
mean2=0.0, | |
logvar2=0.0) | |
return mean_flat(kl_prior) / np.log(2.0) | |
def calc_bpd_loop(self, | |
model, | |
x_start, | |
clip_denoised=True, | |
model_kwargs=None): | |
""" | |
Compute the entire variational lower-bound, measured in bits-per-dim, | |
as well as other related quantities. | |
:param model: the model to evaluate loss on. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:param clip_denoised: if True, clip denoised samples. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:return: a dict containing the following keys: | |
- total_bpd: the total variational lower-bound, per batch element. | |
- prior_bpd: the prior term in the lower-bound. | |
- vb: an [N x T] tensor of terms in the lower-bound. | |
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. | |
- mse: an [N x T] tensor of epsilon MSEs for each timestep. | |
""" | |
device = x_start.device | |
batch_size = x_start.shape[0] | |
vb = [] | |
xstart_mse = [] | |
mse = [] | |
for t in list(range(self.num_timesteps))[::-1]: | |
t_batch = th.tensor([t] * batch_size, device=device) | |
noise = th.randn_like(x_start) | |
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) | |
# Calculate VLB term at the current timestep | |
with th.no_grad(): | |
out = self._vb_terms_bpd( | |
model, | |
x_start=x_start, | |
x_t=x_t, | |
t=t_batch, | |
clip_denoised=clip_denoised, | |
model_kwargs=model_kwargs, | |
) | |
vb.append(out["output"]) | |
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start)**2)) | |
eps = self._predict_eps_from_xstart(x_t, t_batch, | |
out["pred_xstart"]) | |
mse.append(mean_flat((eps - noise)**2)) | |
vb = th.stack(vb, dim=1) | |
xstart_mse = th.stack(xstart_mse, dim=1) | |
mse = th.stack(mse, dim=1) | |
prior_bpd = self._prior_bpd(x_start) | |
total_bpd = vb.sum(dim=1) + prior_bpd | |
return { | |
"total_bpd": total_bpd, | |
"prior_bpd": prior_bpd, | |
"vb": vb, | |
"xstart_mse": xstart_mse, | |
"mse": mse, | |
} | |
def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
""" | |
Extract values from a 1-D numpy array for a batch of indices. | |
:param arr: the 1-D numpy array. | |
:param timesteps: a tensor of indices into the array to extract. | |
:param broadcast_shape: a larger shape of K dimensions with the batch | |
dimension equal to the length of timesteps. | |
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
""" | |
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
while len(res.shape) < len(broadcast_shape): | |
res = res[..., None] | |
return res.expand(broadcast_shape) | |