Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
from abc import abstractmethod | |
from typing import Dict, Iterator, Literal, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from torch import einsum | |
from .base import AbstractRegularizer, measure_perplexity | |
logpy = logging.getLogger(__name__) | |
class AbstractQuantizer(AbstractRegularizer): | |
def __init__(self): | |
super().__init__() | |
# Define these in your init | |
# shape (N,) | |
self.used: Optional[torch.Tensor] | |
self.re_embed: int | |
self.unknown_index: Union[Literal["random"], int] | |
def remap_to_used(self, inds: torch.Tensor) -> torch.Tensor: | |
assert self.used is not None, "You need to define used indices for remap" | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
match = (inds[:, :, None] == used[None, None, ...]).long() | |
new = match.argmax(-1) | |
unknown = match.sum(2) < 1 | |
if self.unknown_index == "random": | |
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to( | |
device=new.device | |
) | |
else: | |
new[unknown] = self.unknown_index | |
return new.reshape(ishape) | |
def unmap_to_all(self, inds: torch.Tensor) -> torch.Tensor: | |
assert self.used is not None, "You need to define used indices for remap" | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
if self.re_embed > self.used.shape[0]: # extra token | |
inds[inds >= self.used.shape[0]] = 0 # simply set to zero | |
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) | |
return back.reshape(ishape) | |
def get_codebook_entry( | |
self, indices: torch.Tensor, shape: Optional[Tuple[int, ...]] = None | |
) -> torch.Tensor: | |
raise NotImplementedError() | |
def get_trainable_parameters(self) -> Iterator[torch.nn.Parameter]: | |
yield from self.parameters() | |
class GumbelQuantizer(AbstractQuantizer): | |
""" | |
credit to @karpathy: | |
https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!) | |
Gumbel Softmax trick quantizer | |
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016 | |
https://arxiv.org/abs/1611.01144 | |
""" | |
def __init__( | |
self, | |
num_hiddens: int, | |
embedding_dim: int, | |
n_embed: int, | |
straight_through: bool = True, | |
kl_weight: float = 5e-4, | |
temp_init: float = 1.0, | |
remap: Optional[str] = None, | |
unknown_index: str = "random", | |
loss_key: str = "loss/vq", | |
) -> None: | |
super().__init__() | |
self.loss_key = loss_key | |
self.embedding_dim = embedding_dim | |
self.n_embed = n_embed | |
self.straight_through = straight_through | |
self.temperature = temp_init | |
self.kl_weight = kl_weight | |
self.proj = nn.Conv2d(num_hiddens, n_embed, 1) | |
self.embed = nn.Embedding(n_embed, embedding_dim) | |
self.remap = remap | |
if self.remap is not None: | |
self.register_buffer("used", torch.tensor(np.load(self.remap))) | |
self.re_embed = self.used.shape[0] | |
else: | |
self.used = None | |
self.re_embed = n_embed | |
if unknown_index == "extra": | |
self.unknown_index = self.re_embed | |
self.re_embed = self.re_embed + 1 | |
else: | |
assert unknown_index == "random" or isinstance( | |
unknown_index, int | |
), "unknown index needs to be 'random', 'extra' or any integer" | |
self.unknown_index = unknown_index # "random" or "extra" or integer | |
if self.remap is not None: | |
logpy.info( | |
f"Remapping {self.n_embed} indices to {self.re_embed} indices. " | |
f"Using {self.unknown_index} for unknown indices." | |
) | |
def forward( | |
self, z: torch.Tensor, temp: Optional[float] = None, return_logits: bool = False | |
) -> Tuple[torch.Tensor, Dict]: | |
# force hard = True when we are in eval mode, as we must quantize. | |
# actually, always true seems to work | |
hard = self.straight_through if self.training else True | |
temp = self.temperature if temp is None else temp | |
out_dict = {} | |
logits = self.proj(z) | |
if self.remap is not None: | |
# continue only with used logits | |
full_zeros = torch.zeros_like(logits) | |
logits = logits[:, self.used, ...] | |
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard) | |
if self.remap is not None: | |
# go back to all entries but unused set to zero | |
full_zeros[:, self.used, ...] = soft_one_hot | |
soft_one_hot = full_zeros | |
z_q = einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) | |
# + kl divergence to the prior loss | |
qy = F.softmax(logits, dim=1) | |
diff = ( | |
self.kl_weight | |
* torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean() | |
) | |
out_dict[self.loss_key] = diff | |
ind = soft_one_hot.argmax(dim=1) | |
out_dict["indices"] = ind | |
if self.remap is not None: | |
ind = self.remap_to_used(ind) | |
if return_logits: | |
out_dict["logits"] = logits | |
return z_q, out_dict | |
def get_codebook_entry(self, indices, shape): | |
# TODO: shape not yet optional | |
b, h, w, c = shape | |
assert b * h * w == indices.shape[0] | |
indices = rearrange(indices, "(b h w) -> b h w", b=b, h=h, w=w) | |
if self.remap is not None: | |
indices = self.unmap_to_all(indices) | |
one_hot = ( | |
F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float() | |
) | |
z_q = einsum("b n h w, n d -> b d h w", one_hot, self.embed.weight) | |
return z_q | |
class VectorQuantizer(AbstractQuantizer): | |
""" | |
____________________________________________ | |
Discretization bottleneck part of the VQ-VAE. | |
Inputs: | |
- n_e : number of embeddings | |
- e_dim : dimension of embedding | |
- beta : commitment cost used in loss term, | |
beta * ||z_e(x)-sg[e]||^2 | |
_____________________________________________ | |
""" | |
def __init__( | |
self, | |
n_e: int, | |
e_dim: int, | |
beta: float = 0.25, | |
remap: Optional[str] = None, | |
unknown_index: str = "random", | |
sane_index_shape: bool = False, | |
log_perplexity: bool = False, | |
embedding_weight_norm: bool = False, | |
loss_key: str = "loss/vq", | |
): | |
super().__init__() | |
self.n_e = n_e | |
self.e_dim = e_dim | |
self.beta = beta | |
self.loss_key = loss_key | |
if not embedding_weight_norm: | |
self.embedding = nn.Embedding(self.n_e, self.e_dim) | |
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
else: | |
self.embedding = torch.nn.utils.weight_norm( | |
nn.Embedding(self.n_e, self.e_dim), dim=1 | |
) | |
self.remap = remap | |
if self.remap is not None: | |
self.register_buffer("used", torch.tensor(np.load(self.remap))) | |
self.re_embed = self.used.shape[0] | |
else: | |
self.used = None | |
self.re_embed = n_e | |
if unknown_index == "extra": | |
self.unknown_index = self.re_embed | |
self.re_embed = self.re_embed + 1 | |
else: | |
assert unknown_index == "random" or isinstance( | |
unknown_index, int | |
), "unknown index needs to be 'random', 'extra' or any integer" | |
self.unknown_index = unknown_index # "random" or "extra" or integer | |
if self.remap is not None: | |
logpy.info( | |
f"Remapping {self.n_e} indices to {self.re_embed} indices. " | |
f"Using {self.unknown_index} for unknown indices." | |
) | |
self.sane_index_shape = sane_index_shape | |
self.log_perplexity = log_perplexity | |
def forward( | |
self, | |
z: torch.Tensor, | |
) -> Tuple[torch.Tensor, Dict]: | |
do_reshape = z.ndim == 4 | |
if do_reshape: | |
# # reshape z -> (batch, height, width, channel) and flatten | |
z = rearrange(z, "b c h w -> b h w c").contiguous() | |
else: | |
assert z.ndim < 4, "No reshaping strategy for inputs > 4 dimensions defined" | |
z = z.contiguous() | |
z_flattened = z.view(-1, self.e_dim) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
d = ( | |
torch.sum(z_flattened**2, dim=1, keepdim=True) | |
+ torch.sum(self.embedding.weight**2, dim=1) | |
- 2 | |
* torch.einsum( | |
"bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n") | |
) | |
) | |
min_encoding_indices = torch.argmin(d, dim=1) | |
z_q = self.embedding(min_encoding_indices).view(z.shape) | |
loss_dict = {} | |
if self.log_perplexity: | |
perplexity, cluster_usage = measure_perplexity( | |
min_encoding_indices.detach(), self.n_e | |
) | |
loss_dict.update({"perplexity": perplexity, "cluster_usage": cluster_usage}) | |
# compute loss for embedding | |
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean( | |
(z_q - z.detach()) ** 2 | |
) | |
loss_dict[self.loss_key] = loss | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# reshape back to match original input shape | |
if do_reshape: | |
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous() | |
if self.remap is not None: | |
min_encoding_indices = min_encoding_indices.reshape( | |
z.shape[0], -1 | |
) # add batch axis | |
min_encoding_indices = self.remap_to_used(min_encoding_indices) | |
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten | |
if self.sane_index_shape: | |
if do_reshape: | |
min_encoding_indices = min_encoding_indices.reshape( | |
z_q.shape[0], z_q.shape[2], z_q.shape[3] | |
) | |
else: | |
min_encoding_indices = rearrange( | |
min_encoding_indices, "(b s) 1 -> b s", b=z_q.shape[0] | |
) | |
loss_dict["min_encoding_indices"] = min_encoding_indices | |
return z_q, loss_dict | |
def get_codebook_entry( | |
self, indices: torch.Tensor, shape: Optional[Tuple[int, ...]] = None | |
) -> torch.Tensor: | |
# shape specifying (batch, height, width, channel) | |
if self.remap is not None: | |
assert shape is not None, "Need to give shape for remap" | |
indices = indices.reshape(shape[0], -1) # add batch axis | |
indices = self.unmap_to_all(indices) | |
indices = indices.reshape(-1) # flatten again | |
# get quantized latent vectors | |
z_q = self.embedding(indices) | |
if shape is not None: | |
z_q = z_q.view(shape) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return z_q | |
class EmbeddingEMA(nn.Module): | |
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5): | |
super().__init__() | |
self.decay = decay | |
self.eps = eps | |
weight = torch.randn(num_tokens, codebook_dim) | |
self.weight = nn.Parameter(weight, requires_grad=False) | |
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False) | |
self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False) | |
self.update = True | |
def forward(self, embed_id): | |
return F.embedding(embed_id, self.weight) | |
def cluster_size_ema_update(self, new_cluster_size): | |
self.cluster_size.data.mul_(self.decay).add_( | |
new_cluster_size, alpha=1 - self.decay | |
) | |
def embed_avg_ema_update(self, new_embed_avg): | |
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay) | |
def weight_update(self, num_tokens): | |
n = self.cluster_size.sum() | |
smoothed_cluster_size = ( | |
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n | |
) | |
# normalize embedding average with smoothed cluster size | |
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) | |
self.weight.data.copy_(embed_normalized) | |
class EMAVectorQuantizer(AbstractQuantizer): | |
def __init__( | |
self, | |
n_embed: int, | |
embedding_dim: int, | |
beta: float, | |
decay: float = 0.99, | |
eps: float = 1e-5, | |
remap: Optional[str] = None, | |
unknown_index: str = "random", | |
loss_key: str = "loss/vq", | |
): | |
super().__init__() | |
self.codebook_dim = embedding_dim | |
self.num_tokens = n_embed | |
self.beta = beta | |
self.loss_key = loss_key | |
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps) | |
self.remap = remap | |
if self.remap is not None: | |
self.register_buffer("used", torch.tensor(np.load(self.remap))) | |
self.re_embed = self.used.shape[0] | |
else: | |
self.used = None | |
self.re_embed = n_embed | |
if unknown_index == "extra": | |
self.unknown_index = self.re_embed | |
self.re_embed = self.re_embed + 1 | |
else: | |
assert unknown_index == "random" or isinstance( | |
unknown_index, int | |
), "unknown index needs to be 'random', 'extra' or any integer" | |
self.unknown_index = unknown_index # "random" or "extra" or integer | |
if self.remap is not None: | |
logpy.info( | |
f"Remapping {self.n_embed} indices to {self.re_embed} indices. " | |
f"Using {self.unknown_index} for unknown indices." | |
) | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Dict]: | |
# reshape z -> (batch, height, width, channel) and flatten | |
# z, 'b c h w -> b h w c' | |
z = rearrange(z, "b c h w -> b h w c") | |
z_flattened = z.reshape(-1, self.codebook_dim) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
d = ( | |
z_flattened.pow(2).sum(dim=1, keepdim=True) | |
+ self.embedding.weight.pow(2).sum(dim=1) | |
- 2 * torch.einsum("bd,nd->bn", z_flattened, self.embedding.weight) | |
) # 'n d -> d n' | |
encoding_indices = torch.argmin(d, dim=1) | |
z_q = self.embedding(encoding_indices).view(z.shape) | |
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) | |
avg_probs = torch.mean(encodings, dim=0) | |
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) | |
if self.training and self.embedding.update: | |
# EMA cluster size | |
encodings_sum = encodings.sum(0) | |
self.embedding.cluster_size_ema_update(encodings_sum) | |
# EMA embedding average | |
embed_sum = encodings.transpose(0, 1) @ z_flattened | |
self.embedding.embed_avg_ema_update(embed_sum) | |
# normalize embed_avg and update weight | |
self.embedding.weight_update(self.num_tokens) | |
# compute loss for embedding | |
loss = self.beta * F.mse_loss(z_q.detach(), z) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# reshape back to match original input shape | |
# z_q, 'b h w c -> b c h w' | |
z_q = rearrange(z_q, "b h w c -> b c h w") | |
out_dict = { | |
self.loss_key: loss, | |
"encodings": encodings, | |
"encoding_indices": encoding_indices, | |
"perplexity": perplexity, | |
} | |
return z_q, out_dict | |
class VectorQuantizerWithInputProjection(VectorQuantizer): | |
def __init__( | |
self, | |
input_dim: int, | |
n_codes: int, | |
codebook_dim: int, | |
beta: float = 1.0, | |
output_dim: Optional[int] = None, | |
**kwargs, | |
): | |
super().__init__(n_codes, codebook_dim, beta, **kwargs) | |
self.proj_in = nn.Linear(input_dim, codebook_dim) | |
self.output_dim = output_dim | |
if output_dim is not None: | |
self.proj_out = nn.Linear(codebook_dim, output_dim) | |
else: | |
self.proj_out = nn.Identity() | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Dict]: | |
rearr = False | |
in_shape = z.shape | |
if z.ndim > 3: | |
rearr = self.output_dim is not None | |
z = rearrange(z, "b c ... -> b (...) c") | |
z = self.proj_in(z) | |
z_q, loss_dict = super().forward(z) | |
z_q = self.proj_out(z_q) | |
if rearr: | |
if len(in_shape) == 4: | |
z_q = rearrange(z_q, "b (h w) c -> b c h w ", w=in_shape[-1]) | |
elif len(in_shape) == 5: | |
z_q = rearrange( | |
z_q, "b (t h w) c -> b c t h w ", w=in_shape[-1], h=in_shape[-2] | |
) | |
else: | |
raise NotImplementedError( | |
f"rearranging not available for {len(in_shape)}-dimensional input." | |
) | |
return z_q, loss_dict | |