Spaces:
Running
on
Zero
Running
on
Zero
# https://gist.githubusercontent.com/lucidrains/5193d38d1d889681dd42feb847f1f6da/raw/1408da9b6a4170399c082358d1b7ca56428b9d8c/vit_with_mask.py | |
from pdb import set_trace as st | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from einops import rearrange, repeat | |
from einops.layers.torch import Rearrange | |
# helpers | |
def pair(t): | |
return t if isinstance(t, tuple) else (t, t) | |
# classes | |
class PreNorm(nn.Module): | |
def __init__(self, dim, fn): | |
super().__init__() | |
self.norm = nn.LayerNorm(dim) | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
return self.fn(self.norm(x), **kwargs) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, hidden_dim, dropout = 0.): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(dim, hidden_dim), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.Linear(hidden_dim, dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Attention(nn.Module): | |
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | |
super().__init__() | |
inner_dim = dim_head * heads | |
project_out = not (heads == 1 and dim_head == dim) | |
self.heads = heads | |
self.scale = dim_head ** -0.5 | |
self.attend = nn.Softmax(dim = -1) | |
self.dropout = nn.Dropout(dropout) | |
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, dim), | |
nn.Dropout(dropout) | |
) if project_out else nn.Identity() | |
def forward(self, x, mask = None): | |
qkv = self.to_qkv(x).chunk(3, dim = -1) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | |
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | |
if mask is not None: | |
mask = rearrange(mask, 'b ... -> b (...)') | |
mask = F.pad(mask, (x.shape[-2] - mask.shape[-1], 0), value = True) | |
dots = dots.masked_fill(~mask, -torch.finfo(dots.dtype).max) | |
attn = self.attend(dots) | |
attn = self.dropout(attn) | |
out = torch.matmul(attn, v) | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
return self.to_out(out) | |
class Transformer(nn.Module): | |
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | |
super().__init__() | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append(nn.ModuleList([ | |
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), | |
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | |
])) | |
def forward(self, x, mask = None): | |
for attn, ff in self.layers: | |
x = attn(x, mask = mask) + x | |
x = ff(x) + x | |
return x | |
class ViT(nn.Module): | |
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): | |
super().__init__() | |
image_height, image_width = pair(image_size) | |
patch_height, patch_width = pair(patch_size) | |
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | |
num_patches = (image_height // patch_height) * (image_width // patch_width) | |
patch_dim = channels * patch_height * patch_width | |
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' | |
self.to_patch_embedding = nn.Sequential( | |
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), | |
nn.Linear(patch_dim, dim), | |
) | |
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) | |
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | |
self.dropout = nn.Dropout(emb_dropout) | |
st() | |
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) | |
self.pool = pool | |
self.to_latent = nn.Identity() | |
self.mlp_head = nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, num_classes) | |
) | |
def forward(self, img, mask = None): | |
x = self.to_patch_embedding(img) | |
b, n, _ = x.shape | |
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x += self.pos_embedding[:, :(n + 1)] | |
x = self.dropout(x) | |
x = self.transformer(x, mask = mask) | |
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] | |
x = self.to_latent(x) | |
return self.mlp_head(x) | |
if __name__ == '__main__': | |
x = torch.randn(1, 3, 256, 256) | |
mask = torch.ones(1, 16, 16).bool() | |
vit = ViT( | |
dim = 512, | |
depth = 6, | |
heads = 8, | |
mlp_dim = 1024, | |
image_size = 256, | |
patch_size = 16, | |
num_classes = 10 | |
) | |
out = vit(x, mask = mask) | |