Spaces:
Running
on
Zero
Running
on
Zero
NIRVANALAN
commited on
Commit
•
14db06e
1
Parent(s):
f944436
update
Browse files- app.py +7 -2
- dit/__pycache__/dit_decoder.cpython-310.pyc +0 -0
- dit/__pycache__/dit_i23d.cpython-310.pyc +0 -0
- dit/__pycache__/dit_models_xformers.cpython-310.pyc +0 -0
- dit/__pycache__/dit_trilatent.cpython-310.pyc +0 -0
- dit/__pycache__/norm.cpython-310.pyc +0 -0
- ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
- logs/LSGM/inference/Objaverse/i23d/dit-L2/log.txt +294 -0
- logs/LSGM/inference/Objaverse/i23d/dit-L2/progress.csv +0 -0
- nsr/__pycache__/train_util_diffusion.cpython-310.pyc +0 -0
- vit/__pycache__/vision_transformer.cpython-310.pyc +0 -0
app.py
CHANGED
@@ -106,10 +106,15 @@ def check_input_image(input_image):
|
|
106 |
|
107 |
|
108 |
def main(args):
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
# args.rendering_kwargs = rendering_options_defaults(args)
|
111 |
|
112 |
-
|
113 |
logger.configure(dir=args.logdir)
|
114 |
|
115 |
th.cuda.empty_cache()
|
@@ -207,7 +212,7 @@ def main(args):
|
|
207 |
loss_class=None,
|
208 |
data=data,
|
209 |
eval_data=None,
|
210 |
-
**
|
211 |
|
212 |
@spaces.GPU(duration=200)
|
213 |
def reconstruct_and_export(*args, **kwargs):
|
|
|
106 |
|
107 |
|
108 |
def main(args):
|
109 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
110 |
+
os.environ['MASTER_PORT'] = '12355'
|
111 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
112 |
+
os.environ["RANK"] = "0"
|
113 |
+
os.environ["WORLD_SIZE"] = "1"
|
114 |
|
115 |
# args.rendering_kwargs = rendering_options_defaults(args)
|
116 |
|
117 |
+
dist_util.setup_dist(args)
|
118 |
logger.configure(dir=args.logdir)
|
119 |
|
120 |
th.cuda.empty_cache()
|
|
|
212 |
loss_class=None,
|
213 |
data=data,
|
214 |
eval_data=None,
|
215 |
+
**args)
|
216 |
|
217 |
@spaces.GPU(duration=200)
|
218 |
def reconstruct_and_export(*args, **kwargs):
|
dit/__pycache__/dit_decoder.cpython-310.pyc
ADDED
Binary file (5.97 kB). View file
|
|
dit/__pycache__/dit_i23d.cpython-310.pyc
CHANGED
Binary files a/dit/__pycache__/dit_i23d.cpython-310.pyc and b/dit/__pycache__/dit_i23d.cpython-310.pyc differ
|
|
dit/__pycache__/dit_models_xformers.cpython-310.pyc
CHANGED
Binary files a/dit/__pycache__/dit_models_xformers.cpython-310.pyc and b/dit/__pycache__/dit_models_xformers.cpython-310.pyc differ
|
|
dit/__pycache__/dit_trilatent.cpython-310.pyc
CHANGED
Binary files a/dit/__pycache__/dit_trilatent.cpython-310.pyc and b/dit/__pycache__/dit_trilatent.cpython-310.pyc differ
|
|
dit/__pycache__/norm.cpython-310.pyc
ADDED
Binary file (1.14 kB). View file
|
|
ldm/modules/__pycache__/attention.cpython-310.pyc
CHANGED
Binary files a/ldm/modules/__pycache__/attention.cpython-310.pyc and b/ldm/modules/__pycache__/attention.cpython-310.pyc differ
|
|
logs/LSGM/inference/Objaverse/i23d/dit-L2/log.txt
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Logging to ./logs/LSGM/inference/Objaverse/i23d/dit-L2/
|
2 |
+
creating model and diffusion...
|
3 |
+
creating 3DAE...
|
4 |
+
length of vit_decoder.blocks: 24
|
5 |
+
init pos_embed with sincos
|
6 |
+
length of vit_decoder.blocks: 24
|
7 |
+
ignore dim_up_mlp: True
|
8 |
+
AE(
|
9 |
+
(encoder): MVEncoderGSDynamicInp(
|
10 |
+
(conv_in): Conv2d(10, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
11 |
+
(down): ModuleList(
|
12 |
+
(0): Module(
|
13 |
+
(block): ModuleList(
|
14 |
+
(0): ResnetBlock(
|
15 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
16 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
17 |
+
(norm2): GroupNorm(32, 64, eps=1e-06, affine=True)
|
18 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
19 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
20 |
+
)
|
21 |
+
)
|
22 |
+
(attn): ModuleList()
|
23 |
+
(downsample): Downsample(
|
24 |
+
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2))
|
25 |
+
)
|
26 |
+
)
|
27 |
+
(1): Module(
|
28 |
+
(block): ModuleList(
|
29 |
+
(0): ResnetBlock(
|
30 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
31 |
+
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
32 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
33 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
34 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
35 |
+
(nin_shortcut): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(attn): ModuleList()
|
39 |
+
(downsample): Downsample(
|
40 |
+
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2))
|
41 |
+
)
|
42 |
+
)
|
43 |
+
(2): Module(
|
44 |
+
(block): ModuleList(
|
45 |
+
(0): ResnetBlock(
|
46 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
47 |
+
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
48 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
49 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
50 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
51 |
+
(nin_shortcut): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
52 |
+
)
|
53 |
+
)
|
54 |
+
(attn): ModuleList()
|
55 |
+
(downsample): Downsample(
|
56 |
+
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2))
|
57 |
+
)
|
58 |
+
)
|
59 |
+
(3): Module(
|
60 |
+
(block): ModuleList(
|
61 |
+
(0): ResnetBlock(
|
62 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
63 |
+
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
64 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
65 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
66 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
67 |
+
)
|
68 |
+
)
|
69 |
+
(attn): ModuleList()
|
70 |
+
)
|
71 |
+
)
|
72 |
+
(mid): Module(
|
73 |
+
(block_1): ResnetBlock(
|
74 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
75 |
+
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
76 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
77 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
78 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
79 |
+
)
|
80 |
+
(attn_1): SpatialTransformer3D(
|
81 |
+
(norm): GroupNorm(32, 256, eps=1e-06, affine=True)
|
82 |
+
(proj_in): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1))
|
83 |
+
(transformer_blocks): ModuleList(
|
84 |
+
(0): BasicTransformerBlock3D(
|
85 |
+
(attn1): MemoryEfficientCrossAttention(
|
86 |
+
(to_q): Linear(in_features=512, out_features=512, bias=False)
|
87 |
+
(to_k): Linear(in_features=512, out_features=512, bias=False)
|
88 |
+
(q_norm): Identity()
|
89 |
+
(k_norm): Identity()
|
90 |
+
(to_v): Linear(in_features=512, out_features=512, bias=False)
|
91 |
+
(to_out): Sequential(
|
92 |
+
(0): Linear(in_features=512, out_features=512, bias=True)
|
93 |
+
(1): Dropout(p=0.0, inplace=False)
|
94 |
+
)
|
95 |
+
)
|
96 |
+
(ff): FeedForward(
|
97 |
+
(net): Sequential(
|
98 |
+
(0): GEGLU(
|
99 |
+
(proj): Linear(in_features=512, out_features=4096, bias=True)
|
100 |
+
)
|
101 |
+
(1): Dropout(p=0.0, inplace=False)
|
102 |
+
(2): Linear(in_features=2048, out_features=512, bias=True)
|
103 |
+
)
|
104 |
+
)
|
105 |
+
(attn2): MemoryEfficientCrossAttention(
|
106 |
+
(to_q): Linear(in_features=512, out_features=512, bias=False)
|
107 |
+
(to_k): Linear(in_features=512, out_features=512, bias=False)
|
108 |
+
(q_norm): Identity()
|
109 |
+
(k_norm): Identity()
|
110 |
+
(to_v): Linear(in_features=512, out_features=512, bias=False)
|
111 |
+
(to_out): Sequential(
|
112 |
+
(0): Linear(in_features=512, out_features=512, bias=True)
|
113 |
+
(1): Dropout(p=0.0, inplace=False)
|
114 |
+
)
|
115 |
+
)
|
116 |
+
(norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
117 |
+
(norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
118 |
+
(norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
119 |
+
)
|
120 |
+
)
|
121 |
+
(proj_out): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
122 |
+
)
|
123 |
+
(block_2): ResnetBlock(
|
124 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
125 |
+
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
126 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
127 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
128 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
129 |
+
)
|
130 |
+
)
|
131 |
+
(norm_out): GroupNorm(32, 256, eps=1e-06, affine=True)
|
132 |
+
(conv_out): Conv2d(256, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
133 |
+
)
|
134 |
+
(decoder): RodinSR_256_fusionv6_ConvQuant_liteSR_dinoInit3DAttn_SD_B_3L_C_withrollout_withSD_D_ditDecoder(
|
135 |
+
(superresolution): ModuleDict(
|
136 |
+
(ldm_upsample): PatchEmbedTriplane(
|
137 |
+
(proj): Conv2d(12, 3072, kernel_size=(2, 2), stride=(2, 2), groups=3)
|
138 |
+
(norm): Identity()
|
139 |
+
)
|
140 |
+
(quant_conv): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), groups=3)
|
141 |
+
(conv_sr): Decoder(
|
142 |
+
(conv_in): Conv2d(1024, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
143 |
+
(mid): Module(
|
144 |
+
(block_1): ResnetBlock(
|
145 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
146 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
147 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
148 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
149 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
150 |
+
)
|
151 |
+
(attn_1): MemoryEfficientAttnBlock(
|
152 |
+
(norm): GroupNorm(32, 128, eps=1e-06, affine=True)
|
153 |
+
(q): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
154 |
+
(k): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
155 |
+
(v): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
156 |
+
(proj_out): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
157 |
+
)
|
158 |
+
(block_2): ResnetBlock(
|
159 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
160 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
161 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
162 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
163 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
164 |
+
)
|
165 |
+
)
|
166 |
+
(up): ModuleList(
|
167 |
+
(0): Module(
|
168 |
+
(block): ModuleList(
|
169 |
+
(0): ResnetBlock(
|
170 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
171 |
+
(conv1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
172 |
+
(norm2): GroupNorm(32, 32, eps=1e-06, affine=True)
|
173 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
174 |
+
(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
175 |
+
(nin_shortcut): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
|
176 |
+
)
|
177 |
+
(1): ResnetBlock(
|
178 |
+
(norm1): GroupNorm(32, 32, eps=1e-06, affine=True)
|
179 |
+
(conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
180 |
+
(norm2): GroupNorm(32, 32, eps=1e-06, affine=True)
|
181 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
182 |
+
(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
183 |
+
)
|
184 |
+
)
|
185 |
+
(attn): ModuleList()
|
186 |
+
)
|
187 |
+
(1): Module(
|
188 |
+
(block): ModuleList(
|
189 |
+
(0-1): 2 x ResnetBlock(
|
190 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
191 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
192 |
+
(norm2): GroupNorm(32, 64, eps=1e-06, affine=True)
|
193 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
194 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
195 |
+
)
|
196 |
+
)
|
197 |
+
(attn): ModuleList()
|
198 |
+
(upsample): Upsample(
|
199 |
+
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
200 |
+
)
|
201 |
+
)
|
202 |
+
(2): Module(
|
203 |
+
(block): ModuleList(
|
204 |
+
(0): ResnetBlock(
|
205 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
206 |
+
(conv1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
207 |
+
(norm2): GroupNorm(32, 64, eps=1e-06, affine=True)
|
208 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
209 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
210 |
+
(nin_shortcut): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
|
211 |
+
)
|
212 |
+
(1): ResnetBlock(
|
213 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
214 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
215 |
+
(norm2): GroupNorm(32, 64, eps=1e-06, affine=True)
|
216 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
217 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(attn): ModuleList()
|
221 |
+
(upsample): Upsample(
|
222 |
+
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
223 |
+
)
|
224 |
+
)
|
225 |
+
(3): Module(
|
226 |
+
(block): ModuleList(
|
227 |
+
(0-1): 2 x ResnetBlock(
|
228 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
229 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
230 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
231 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
232 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
233 |
+
)
|
234 |
+
)
|
235 |
+
(attn): ModuleList()
|
236 |
+
(upsample): Upsample(
|
237 |
+
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
238 |
+
)
|
239 |
+
)
|
240 |
+
)
|
241 |
+
(norm_out): GroupNorm(32, 32, eps=1e-06, affine=True)
|
242 |
+
(conv_out): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
243 |
+
)
|
244 |
+
)
|
245 |
+
(vit_decoder): DiT2(
|
246 |
+
(blocks): ModuleList(
|
247 |
+
(0-23): 24 x DiTBlock2(
|
248 |
+
(norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=False)
|
249 |
+
(norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=False)
|
250 |
+
(attn): MemEffAttention(
|
251 |
+
(qkv): Linear(in_features=1024, out_features=3072, bias=True)
|
252 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
253 |
+
(proj): Linear(in_features=1024, out_features=1024, bias=True)
|
254 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
255 |
+
(q_norm): Identity()
|
256 |
+
(k_norm): Identity()
|
257 |
+
)
|
258 |
+
(mlp): FusedMLP(
|
259 |
+
(mlp): Sequential(
|
260 |
+
(0): Linear(in_features=1024, out_features=4096, bias=False)
|
261 |
+
(1): FusedDropoutBias(
|
262 |
+
(activation_pytorch): GELU(approximate='none')
|
263 |
+
)
|
264 |
+
(2): Linear(in_features=4096, out_features=1024, bias=False)
|
265 |
+
(3): FusedDropoutBias(
|
266 |
+
(activation_pytorch): Identity()
|
267 |
+
)
|
268 |
+
)
|
269 |
+
)
|
270 |
+
(adaLN_modulation): Sequential(
|
271 |
+
(0): SiLU()
|
272 |
+
(1): Linear(in_features=1024, out_features=6144, bias=True)
|
273 |
+
)
|
274 |
+
)
|
275 |
+
)
|
276 |
+
)
|
277 |
+
(triplane_decoder): Triplane(
|
278 |
+
(renderer): ImportanceRenderer(
|
279 |
+
(ray_marcher): MipRayMarcher2()
|
280 |
+
)
|
281 |
+
(ray_sampler): PatchRaySampler()
|
282 |
+
(decoder): OSGDecoder(
|
283 |
+
(net): Sequential(
|
284 |
+
(0): FullyConnectedLayer(in_features=32, out_features=64, activation=linear)
|
285 |
+
(1): Softplus(beta=1.0, threshold=20.0)
|
286 |
+
(2): FullyConnectedLayer(in_features=64, out_features=4, activation=linear)
|
287 |
+
)
|
288 |
+
)
|
289 |
+
)
|
290 |
+
(decoder_pred): None
|
291 |
+
)
|
292 |
+
)
|
293 |
+
create dataset
|
294 |
+
joint_denoise_rec_model enables AMP to accelerate training
|
logs/LSGM/inference/Objaverse/i23d/dit-L2/progress.csv
ADDED
File without changes
|
nsr/__pycache__/train_util_diffusion.cpython-310.pyc
CHANGED
Binary files a/nsr/__pycache__/train_util_diffusion.cpython-310.pyc and b/nsr/__pycache__/train_util_diffusion.cpython-310.pyc differ
|
|
vit/__pycache__/vision_transformer.cpython-310.pyc
CHANGED
Binary files a/vit/__pycache__/vision_transformer.cpython-310.pyc and b/vit/__pycache__/vision_transformer.cpython-310.pyc differ
|
|