from .transport import Transport, ModelType, WeightType, PathType, Sampler, SNRType def create_transport( path_type='Linear', prediction="velocity", loss_weight=None, train_eps=None, sample_eps=None, snr_type='uniform', ): """function for creating Transport object **Note**: model prediction defaults to velocity Args: - path_type: type of path to use; default to linear - learn_score: set model prediction to score - learn_noise: set model prediction to noise - velocity_weighted: weight loss by velocity weight - likelihood_weighted: weight loss by likelihood weight - train_eps: small epsilon for avoiding instability during training - sample_eps: small epsilon for avoiding instability during sampling """ if prediction == "noise": model_type = ModelType.NOISE elif prediction == "score": model_type = ModelType.SCORE else: model_type = ModelType.VELOCITY if loss_weight == "velocity": loss_type = WeightType.VELOCITY elif loss_weight == "likelihood": loss_type = WeightType.LIKELIHOOD else: loss_type = WeightType.NONE if snr_type == "lognorm": snr_type = SNRType.LOGNORM elif snr_type == "uniform": snr_type = SNRType.UNIFORM else: raise ValueError(f"Invalid snr type {snr_type}") path_choice = { "Linear": PathType.LINEAR, "GVP": PathType.GVP, "VP": PathType.VP, } path_type = path_choice[path_type] if (path_type in [PathType.VP]): train_eps = 1e-5 if train_eps is None else train_eps sample_eps = 1e-3 if train_eps is None else sample_eps elif (path_type in [PathType.GVP, PathType.LINEAR] and model_type != ModelType.VELOCITY): train_eps = 1e-3 if train_eps is None else train_eps sample_eps = 1e-3 if train_eps is None else sample_eps else: # velocity & [GVP, LINEAR] is stable everywhere train_eps = 0 sample_eps = 0 # create flow state state = Transport( model_type=model_type, path_type=path_type, loss_type=loss_type, train_eps=train_eps, sample_eps=sample_eps, snr_type=snr_type, ) return state