import torch def rms_norm(x, weight=None, eps=1e-05): output = x / torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) return output * weight if weight is not None else output class RMSNorm(torch.nn.Module): def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, dtype=None, device=None): super().__init__() self.eps = eps if elementwise_affine: self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device)) else: self.register_parameter('weight', None) def forward(self, x): return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)