Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,733 Bytes
38e3f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import torch
import torch.nn as nn
class SeedBinRegressor(nn.Module):
def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10):
"""Bin center regressor network. Bin centers are bounded on (min_depth, max_depth) interval.
Args:
in_features (int): input channels
n_bins (int, optional): Number of bin centers. Defaults to 16.
mlp_dim (int, optional): Hidden dimension. Defaults to 256.
min_depth (float, optional): Min depth value. Defaults to 1e-3.
max_depth (float, optional): Max depth value. Defaults to 10.
"""
super().__init__()
self.version = "1_1"
self.min_depth = min_depth
self.max_depth = max_depth
self._net = nn.Sequential(
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
nn.ReLU(inplace=True),
nn.Conv2d(mlp_dim, n_bins, 1, 1, 0),
nn.ReLU(inplace=True)
)
def forward(self, x):
"""
Returns tensor of bin_width vectors (centers). One vector b for every pixel
"""
B = self._net(x)
eps = 1e-3
B = B + eps
B_widths_normed = B / B.sum(dim=1, keepdim=True)
B_widths = (self.max_depth - self.min_depth) * \
B_widths_normed # .shape NCHW
# pad has the form (left, right, top, bottom, front, back)
B_widths = nn.functional.pad(
B_widths, (0, 0, 0, 0, 1, 0), mode='constant', value=self.min_depth)
B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW
B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:, 1:, ...])
return B_widths_normed, B_centers
class SeedBinRegressorUnnormed(nn.Module):
def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10):
"""Bin center regressor network. Bin centers are unbounded
Args:
in_features (int): input channels
n_bins (int, optional): Number of bin centers. Defaults to 16.
mlp_dim (int, optional): Hidden dimension. Defaults to 256.
min_depth (float, optional): Not used. (for compatibility with SeedBinRegressor)
max_depth (float, optional): Not used. (for compatibility with SeedBinRegressor)
"""
super().__init__()
self.version = "1_1"
self._net = nn.Sequential(
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
nn.ReLU(inplace=True),
nn.Conv2d(mlp_dim, n_bins, 1, 1, 0),
nn.Softplus()
)
def forward(self, x):
"""
Returns tensor of bin_width vectors (centers). One vector b for every pixel
"""
B_centers = self._net(x)
return B_centers, B_centers
class Projector(nn.Module):
def __init__(self, in_features, out_features, mlp_dim=128):
"""Projector MLP
Args:
in_features (int): input channels
out_features (int): output channels
mlp_dim (int, optional): hidden dimension. Defaults to 128.
"""
super().__init__()
self._net = nn.Sequential(
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
nn.ReLU(inplace=True),
nn.Conv2d(mlp_dim, out_features, 1, 1, 0),
)
def forward(self, x):
return self._net(x)
class LinearSplitter(nn.Module):
def __init__(self, in_features, prev_nbins, split_factor=2, mlp_dim=128, min_depth=1e-3, max_depth=10):
super().__init__()
self.prev_nbins = prev_nbins
self.split_factor = split_factor
self.min_depth = min_depth
self.max_depth = max_depth
self._net = nn.Sequential(
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
nn.GELU(),
nn.Conv2d(mlp_dim, prev_nbins * split_factor, 1, 1, 0),
nn.ReLU()
)
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False):
"""
x : feature block; shape - n, c, h, w
b_prev : previous bin widths normed; shape - n, prev_nbins, h, w
"""
if prev_b_embedding is not None:
if interpolate:
prev_b_embedding = nn.functional.interpolate(prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True)
x = x + prev_b_embedding
S = self._net(x)
eps = 1e-3
S = S + eps
n, c, h, w = S.shape
S = S.view(n, self.prev_nbins, self.split_factor, h, w)
S_normed = S / S.sum(dim=2, keepdim=True) # fractional splits
b_prev = nn.functional.interpolate(b_prev, (h,w), mode='bilinear', align_corners=True)
b_prev = b_prev / b_prev.sum(dim=1, keepdim=True) # renormalize for gurantees
# print(b_prev.shape, S_normed.shape)
# if is_for_query:(1).expand(-1, b_prev.size(0)//n, -1, -1, -1, -1).flatten(0,1) # TODO ? can replace all this with a single torch.repeat?
b = b_prev.unsqueeze(2) * S_normed
b = b.flatten(1,2) # .shape n, prev_nbins * split_factor, h, w
# calculate bin centers for loss calculation
B_widths = (self.max_depth - self.min_depth) * b # .shape N, nprev * splitfactor, H, W
# pad has the form (left, right, top, bottom, front, back)
B_widths = nn.functional.pad(B_widths, (0,0,0,0,1,0), mode='constant', value=self.min_depth)
B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW
B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:,1:,...])
return b, B_centers |