Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,807 Bytes
38e3f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import argparse
import json
import os
import torch
import numpy as np
from tqdm import tqdm
from omegaconf import OmegaConf
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import AutoencoderKLTemporalDecoder, EulerDiscreteScheduler
from diffusers.utils.import_utils import is_xformers_available
from packaging import version as pver
from cameractrl.pipelines.pipeline_animation import StableVideoDiffusionPipelinePoseCond
from cameractrl.models.unet import UNetSpatioTemporalConditionModelPoseCond
from cameractrl.models.pose_adaptor import CameraPoseEncoder
from cameractrl.utils.util import save_videos_grid
class Camera(object):
def __init__(self, entry):
fx, fy, cx, cy = entry[1:5]
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
w2c_mat = np.array(entry[7:]).reshape(3, 4)
w2c_mat_4x4 = np.eye(4)
w2c_mat_4x4[:3, :] = w2c_mat
self.w2c_mat = w2c_mat_4x4
self.c2w_mat = np.linalg.inv(w2c_mat_4x4)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def get_relative_pose(cam_params, zero_first_frame_scale):
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
source_cam_c2w = abs_c2ws[0]
if zero_first_frame_scale:
cam_to_origin = 0
else:
cam_to_origin = np.linalg.norm(source_cam_c2w[:3, 3])
target_cam_c2w = np.array([
[1, 0, 0, 0],
[0, 1, 0, -cam_to_origin],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
abs2rel = target_cam_c2w @ abs_w2cs[0]
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
ret_poses = np.array(ret_poses, dtype=np.float32)
return ret_poses
def ray_condition(K, c2w, H, W, device):
# c2w: B, V, 4, 4
# K: B, V, 4
B = K.shape[0]
j, i = custom_meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
)
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
zs = torch.ones_like(i) # [B, HxW]
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
zs = zs.expand_as(ys)
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW
rays_o = c2w[..., :3, 3] # B, V, 3
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW
# c2w @ dirctions
rays_dxo = torch.linalg.cross(rays_o, rays_d)
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
return plucker
def get_pipeline(ori_model_path, unet_subfolder, down_block_types, up_block_types, pose_encoder_kwargs,
attention_processor_kwargs, pose_adaptor_ckpt, enable_xformers, device):
noise_scheduler = EulerDiscreteScheduler.from_pretrained(ori_model_path, subfolder="scheduler")
feature_extractor = CLIPImageProcessor.from_pretrained(ori_model_path, subfolder="feature_extractor")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(ori_model_path, subfolder="image_encoder")
vae = AutoencoderKLTemporalDecoder.from_pretrained(ori_model_path, subfolder="vae")
unet = UNetSpatioTemporalConditionModelPoseCond.from_pretrained(ori_model_path,
subfolder=unet_subfolder,
down_block_types=down_block_types,
up_block_types=up_block_types)
pose_encoder = CameraPoseEncoder(**pose_encoder_kwargs)
print("Setting the attention processors")
unet.set_pose_cond_attn_processor(enable_xformers=(enable_xformers and is_xformers_available()), **attention_processor_kwargs)
print(f"Loading weights of camera encoder and attention processor from {pose_adaptor_ckpt}")
ckpt_dict = torch.load(pose_adaptor_ckpt, map_location=unet.device)
pose_encoder_state_dict = ckpt_dict['pose_encoder_state_dict']
pose_encoder_m, pose_encoder_u = pose_encoder.load_state_dict(pose_encoder_state_dict)
assert len(pose_encoder_m) == 0 and len(pose_encoder_u) == 0
attention_processor_state_dict = ckpt_dict['attention_processor_state_dict']
_, attention_processor_u = unet.load_state_dict(attention_processor_state_dict, strict=False)
assert len(attention_processor_u) == 0
print("Loading done")
vae.to(device)
image_encoder.to(device)
unet.to(device)
pipeline = StableVideoDiffusionPipelinePoseCond(
vae=vae,
image_encoder=image_encoder,
unet=unet,
scheduler=noise_scheduler,
feature_extractor=feature_extractor,
pose_encoder=pose_encoder
)
pipeline = pipeline.to(device)
return pipeline
def main(args):
os.makedirs(os.path.join(args.out_root, 'generated_videos'), exist_ok=True)
os.makedirs(os.path.join(args.out_root, 'reference_images'), exist_ok=True)
rank = args.local_rank
setup_for_distributed(rank == 0)
gpu_id = rank % torch.cuda.device_count()
model_configs = OmegaConf.load(args.model_config)
device = f"cuda:{gpu_id}"
print(f'Constructing pipeline')
pipeline = get_pipeline(args.ori_model_path, model_configs['unet_subfolder'], model_configs['down_block_types'],
model_configs['up_block_types'], model_configs['pose_encoder_kwargs'],
model_configs['attention_processor_kwargs'], args.pose_adaptor_ckpt, args.enable_xformers, device)
print('Done')
print('Loading K, R, t matrix')
with open(args.trajectory_file, 'r') as f:
poses = f.readlines()
poses = [pose.strip().split(' ') for pose in poses[1:]]
cam_params = [[float(x) for x in pose] for pose in poses]
cam_params = [Camera(cam_param) for cam_param in cam_params]
sample_wh_ratio = args.image_width / args.image_height
pose_wh_ratio = args.original_pose_width / args.original_pose_height
if pose_wh_ratio > sample_wh_ratio:
resized_ori_w = args.image_height * pose_wh_ratio
for cam_param in cam_params:
cam_param.fx = resized_ori_w * cam_param.fx / args.image_width
else:
resized_ori_h = args.image_width / pose_wh_ratio
for cam_param in cam_params:
cam_param.fy = resized_ori_h * cam_param.fy / args.image_height
intrinsic = np.asarray([[cam_param.fx * args.image_width,
cam_param.fy * args.image_height,
cam_param.cx * args.image_width,
cam_param.cy * args.image_height]
for cam_param in cam_params], dtype=np.float32)
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
c2ws = get_relative_pose(cam_params, zero_first_frame_scale=True)
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
plucker_embedding = ray_condition(K, c2ws, args.image_height, args.image_width, device='cpu') # b f h w 6
plucker_embedding = plucker_embedding.permute(0, 1, 4, 2, 3).contiguous().to(device=device)
prompt_dict = json.load(open(args.prompt_file, 'r'))
prompt_images = prompt_dict['image_paths']
prompt_captions = prompt_dict['captions']
N = int(len(prompt_images) // args.n_procs)
remainder = int(len(prompt_images) % args.n_procs)
prompts_per_gpu = [N + 1 if gpu_id < remainder else N for gpu_id in range(args.n_procs)]
low_idx = sum(prompts_per_gpu[:gpu_id])
high_idx = low_idx + prompts_per_gpu[gpu_id]
prompt_images = prompt_images[low_idx: high_idx]
prompt_captions = prompt_captions[low_idx: high_idx]
print(f"rank {rank} / {torch.cuda.device_count()}, number of prompts: {len(prompt_images)}")
generator = torch.Generator(device=device)
generator.manual_seed(42)
for prompt_image, prompt_caption in tqdm(zip(prompt_images, prompt_captions)):
# save_name = "_".join(prompt_caption.split(" "))
save_name = prompt_caption.split('.')[0]
condition_image = Image.open(prompt_image)
with torch.no_grad():
sample = pipeline(
image=condition_image,
pose_embedding=plucker_embedding,
height=args.image_height,
width=args.image_width,
num_frames=args.num_frames,
num_inference_steps=args.num_inference_steps,
min_guidance_scale=args.min_guidance_scale,
max_guidance_scale=args.max_guidance_scale,
do_image_process=True,
generator=generator,
output_type='pt'
).frames[0].transpose(0, 1).cpu() # [3, f, h, w] 0-1
resized_condition_image = condition_image.resize((args.image_width, args.image_height))
# save_videos_grid(sample[None], f"{os.path.join(args.out_root, 'generated_videos')}/{save_name}.mp4", rescale=False)
save_videos_grid(sample[None], f"{os.path.join(args.out_root, 'generated_videos')}/{save_name}.gif", rescale=False)
resized_condition_image.save(os.path.join(args.out_root, 'reference_images', f'{save_name}.png'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--out_root", type=str)
parser.add_argument("--image_height", type=int, default=320)
parser.add_argument("--image_width", type=int, default=576)
parser.add_argument("--num_frames", type=int, default=14, help="14 for svd and 25 for svd-xt", choices=[14, 25])
parser.add_argument("--ori_model_path", type=str)
parser.add_argument("--unet_subfolder", type=str, default='unet')
parser.add_argument("--enable_xformers", action='store_true')
parser.add_argument("--pose_adaptor_ckpt", default=None)
parser.add_argument("--num_inference_steps", type=int, default=25)
parser.add_argument("--min_guidance_scale", type=float, default=1.0)
parser.add_argument("--max_guidance_scale", type=float, default=3.0)
parser.add_argument("--prompt_file", required=True, help='prompts path, json or txt')
parser.add_argument("--trajectory_file", required=True)
parser.add_argument("--original_pose_width", type=int, default=1280)
parser.add_argument("--original_pose_height", type=int, default=720)
parser.add_argument("--model_config", required=True)
parser.add_argument("--n_procs", type=int, default=8)
# DDP args
parser.add_argument("--world_size", default=1, type=int,
help="number of the distributed processes.")
parser.add_argument('--local-rank', type=int, default=-1,
help='Replica rank on the current node. This field is required '
'by `torch.distributed.launch`.')
args = parser.parse_args()
main(args)
|