File size: 15,455 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
from easydict import EasyDict as edict
from einops import rearrange
from sklearn.cluster import SpectralClustering
from spatracker.blocks import Lie
import matplotlib.pyplot as plt
import cv2

import torch.nn.functional as F
from spatracker.blocks import (
    BasicEncoder,
    CorrBlock,
    EUpdateFormer,
    FusionFormer,
    pix2cam,
    cam2pix,
    edgeMat,
    VitEncoder,
    DPTEnc,
    DPT_DINOv2,
    Dinov2
)

from spatracker.feature_net import (
    LocalSoftSplat
)

from spatracker.model_utils import (
    meshgrid2d, bilinear_sample2d, smart_cat, sample_features5d, vis_PCA
)
from spatracker.embeddings import (
    get_2d_embedding,
    get_3d_embedding,
    get_1d_sincos_pos_embed_from_grid,
    get_2d_sincos_pos_embed,
    get_3d_sincos_pos_embed_from_grid,
    Embedder_Fourier,
)
import numpy as np
from spatracker.softsplat import softsplat 

torch.manual_seed(0)


def get_points_on_a_grid(grid_size, interp_shape,
                          grid_center=(0, 0), device="cuda"):
    if grid_size == 1:
        return torch.tensor([interp_shape[1] / 2, 
                             interp_shape[0] / 2], device=device)[
            None, None
        ]

    grid_y, grid_x = meshgrid2d(
        1, grid_size, grid_size, stack=False, norm=False, device=device
    )
    step = interp_shape[1] // 64
    if grid_center[0] != 0 or grid_center[1] != 0:
        grid_y = grid_y - grid_size / 2.0
        grid_x = grid_x - grid_size / 2.0
    grid_y = step + grid_y.reshape(1, -1) / float(grid_size - 1) * (
        interp_shape[0] - step * 2
    )
    grid_x = step + grid_x.reshape(1, -1) / float(grid_size - 1) * (
        interp_shape[1] - step * 2
    )

    grid_y = grid_y + grid_center[0]
    grid_x = grid_x + grid_center[1]
    xy = torch.stack([grid_x, grid_y], dim=-1).to(device)
    return xy


def sample_pos_embed(grid_size, embed_dim, coords):
    if coords.shape[-1] == 2:
        pos_embed = get_2d_sincos_pos_embed(embed_dim=embed_dim,
                                             grid_size=grid_size)
        pos_embed = (
            torch.from_numpy(pos_embed)
            .reshape(grid_size[0], grid_size[1], embed_dim)
            .float()
            .unsqueeze(0)
            .to(coords.device)
        )
        sampled_pos_embed = bilinear_sample2d(
            pos_embed.permute(0, 3, 1, 2), 
            coords[:, 0, :, 0], coords[:, 0, :, 1]
        )
    elif coords.shape[-1] == 3:
        sampled_pos_embed = get_3d_sincos_pos_embed_from_grid(
            embed_dim, coords[:, :1, ...]
        ).float()[:,0,...].permute(0, 2, 1)

    return sampled_pos_embed


class FeatureExtractor(nn.Module):
    def __init__(
        self,
        S=8,
        stride=8,
        add_space_attn=True,
        num_heads=8,
        hidden_size=384,
        space_depth=12,
        time_depth=12,
        depth_extend_margin = 0.2,
        args=edict({})
    ):
        super(FeatureExtractor, self).__init__()

        # step1: config the arch of the model
        self.args=args
        # step1.1: config the default value of the model
        if getattr(args, "depth_color", None) == None:
            self.args.depth_color = False
        if getattr(args, "if_ARAP", None) == None:
            self.args.if_ARAP = True
        if getattr(args, "flash_attn", None) == None:
            self.args.flash_attn = True
        if getattr(args, "backbone", None) == None:
            self.args.backbone = "CNN"
        if getattr(args, "Nblock", None) == None:
            self.args.Nblock = 0  
        if getattr(args, "Embed3D", None) == None:
            self.args.Embed3D = True

        # step1.2: config the model parameters
        self.S = S
        self.stride = stride
        self.hidden_dim = 256
        self.latent_dim = latent_dim = 128
        self.b_latent_dim = self.latent_dim//3
        self.corr_levels = 4
        self.corr_radius = 3
        self.add_space_attn = add_space_attn
        self.lie = Lie()
        
        self.depth_extend_margin = depth_extend_margin
        
        

        # step2: config the model components
        # @Encoder
        self.fnet = BasicEncoder(input_dim=3,
            output_dim=self.latent_dim, norm_fn="instance", dropout=0, 
            stride=stride, Embed3D=False
        )

        # conv head for the tri-plane features
        self.headyz = nn.Sequential(
            nn.Conv2d(self.latent_dim, self.latent_dim, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(self.latent_dim, self.latent_dim, 3, padding=1))
        
        self.headxz = nn.Sequential(
            nn.Conv2d(self.latent_dim, self.latent_dim, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(self.latent_dim, self.latent_dim, 3, padding=1))

        # @UpdateFormer
        self.updateformer = EUpdateFormer(
            space_depth=space_depth,
            time_depth=time_depth,
            input_dim=456, 
            hidden_size=hidden_size,
            num_heads=num_heads,
            output_dim=latent_dim + 3,
            mlp_ratio=4.0,
            add_space_attn=add_space_attn,
            flash=getattr(self.args, "flash_attn", True)
        )
        self.support_features = torch.zeros(100, 384).to("cuda") + 0.1

        self.norm = nn.GroupNorm(1, self.latent_dim)
       
        self.ffeat_updater = nn.Sequential(
            nn.Linear(self.latent_dim, self.latent_dim),
            nn.GELU(),
        )
        self.ffeatyz_updater = nn.Sequential(
            nn.Linear(self.latent_dim, self.latent_dim),
            nn.GELU(),
        )
        self.ffeatxz_updater = nn.Sequential(
            nn.Linear(self.latent_dim, self.latent_dim),
            nn.GELU(),
        )

        #TODO @NeuralArap: optimize the arap
        self.embed_traj = Embedder_Fourier(
            input_dim=5, max_freq_log2=5.0, N_freqs=3, include_input=True
        )
        self.embed3d = Embedder_Fourier(
            input_dim=3, max_freq_log2=10.0, N_freqs=10, include_input=True
        )
        self.embedConv = nn.Conv2d(self.latent_dim+63,
                            self.latent_dim, 3, padding=1)
        
        # @Vis_predictor
        self.vis_predictor = nn.Sequential(
            nn.Linear(128, 1),
        )

        self.embedProj = nn.Linear(63, 456)
        self.zeroMLPflow = nn.Linear(195, 130)

    def prepare_track(self, rgbds, queries):
        """
        NOTE:
        Normalized the rgbs and sorted the queries via their first appeared time
        Args: 
            rgbds: the input rgbd images (B T 4 H W) 
            queries: the input queries (B N 4)
        Return:
            rgbds: the normalized rgbds (B T 4 H W)
            queries: the sorted queries (B N 4)
            track_mask:         
        """
        assert (rgbds.shape[2]==4) and (queries.shape[2]==4)
        #Step1: normalize the rgbs input
        device = rgbds.device
        rgbds[:, :, :3, ...] = 2 * (rgbds[:, :, :3, ...] / 255.0) - 1.0
        B, T, C, H, W = rgbds.shape
        B, N, __ = queries.shape
        self.traj_e = torch.zeros((B, T, N, 3), device=device)
        self.vis_e = torch.zeros((B, T, N), device=device)

        #Step2: sort the points via their first appeared time
        first_positive_inds = queries[0, :, 0].long()
        __, sort_inds = torch.sort(first_positive_inds, dim=0, descending=False)
        inv_sort_inds = torch.argsort(sort_inds, dim=0)
        first_positive_sorted_inds = first_positive_inds[sort_inds]
        # check if can be inverse
        assert torch.allclose(
            first_positive_inds, first_positive_inds[sort_inds][inv_sort_inds]
        )

        # filter those points never appear points during 1 - T
        ind_array = torch.arange(T, device=device)
        ind_array = ind_array[None, :, None].repeat(B, 1, N)
        track_mask = (ind_array >= 
                      first_positive_inds[None, None, :]).unsqueeze(-1)
        
        # scale the coords_init 
        coords_init = queries[:, :, 1:].reshape(B, 1, N, 3).repeat(
            1, self.S, 1, 1
        ) 
        coords_init[..., :2] /= float(self.stride)

        #Step3: initial the regular grid   
        gridx = torch.linspace(0, W//self.stride - 1, W//self.stride)
        gridy = torch.linspace(0, H//self.stride - 1, H//self.stride)
        gridx, gridy = torch.meshgrid(gridx, gridy)
        gridxy = torch.stack([gridx, gridy], dim=-1).to(rgbds.device).permute(
            2, 1, 0
        )
        vis_init = torch.ones((B, self.S, N, 1), device=device).float() * 10

        # Step4: initial traj for neural arap
        T_series = torch.linspace(0, 5, T).reshape(1, T, 1 , 1).cuda() # 1 T 1 1
        T_series = T_series.repeat(B, 1, N, 1)
        # get the 3d traj in the camera coordinates
        intr_init = self.intrs[:,queries[0,:,0].long()]
        Traj_series = pix2cam(queries[:,:,None,1:].double(), intr_init.double()) # [B S N 3]
        #torch.inverse(intr_init.double())@queries[:,:,1:,None].double() # B N 3 1
        Traj_series = Traj_series.repeat(1, 1, T, 1).permute(0, 2, 1, 3).float()
        Traj_series = torch.cat([T_series, Traj_series], dim=-1)
        # get the indicator for the neural arap
        Traj_mask = -1e2*torch.ones_like(T_series)
        Traj_series = torch.cat([Traj_series, Traj_mask], dim=-1)

        return (
            rgbds, 
            first_positive_inds, 
            first_positive_sorted_inds,
            sort_inds, inv_sort_inds, 
            track_mask, gridxy, coords_init[..., sort_inds, :].clone(),
            vis_init, Traj_series[..., sort_inds, :].clone()
            )

    def sample_trifeat(self, t, 
                       coords, 
                       featMapxy,
                       featMapyz,
                       featMapxz):
        """
        Sample the features from the 5D triplane feature map 3*(B S C H W)
        Args:
            t: the time index
            coords: the coordinates of the points B S N 3
            featMapxy: the feature map B S C Hx Wy
            featMapyz: the feature map B S C Hy Wz
            featMapxz: the feature map B S C Hx Wz
        """
        # get xy_t yz_t xz_t
        queried_t = t.reshape(1, 1, -1, 1)
        xy_t = torch.cat(
            [queried_t, coords[..., [0,1]]],
            dim=-1
            )
        yz_t = torch.cat(
            [queried_t, coords[..., [1, 2]]],
            dim=-1
            ) 
        xz_t = torch.cat(
            [queried_t, coords[..., [0, 2]]],
            dim=-1
            )
        featxy_init = sample_features5d(featMapxy, xy_t)
    
        featyz_init = sample_features5d(featMapyz, yz_t)
        featxz_init = sample_features5d(featMapxz, xz_t)
        
        featxy_init = featxy_init.repeat(1, self.S, 1, 1)
        featyz_init = featyz_init.repeat(1, self.S, 1, 1)
        featxz_init = featxz_init.repeat(1, self.S, 1, 1)

        return featxy_init, featyz_init, featxz_init
    
            

    def forward(self, rgbds, queries, num_levels=4, feat_init=None,
                is_train=False, intrs=None, wind_S=None):
        '''
        queries: given trajs (B, f, N, 3) [x, y, z], x, y in camera coordinate, z in depth (need to be normalized)
        vis_init: visibility of the points (B, f, N) , 0 for invisible, 1 for visible
        '''
        B, T, C, H, W = rgbds.shape
        
        Dz = W//self.stride
        
        rgbs_ = rgbds[:, :, :3,...]
        depth_all = rgbds[:, :, 3,...]
        d_near = self.d_near = depth_all[depth_all>0.01].min().item()
        d_far = self.d_far = depth_all[depth_all>0.01].max().item()

        d_near_z = queries.reshape(B, -1, 3)[:, :, 2].min().item()
        d_far_z = queries.reshape(B, -1, 3)[:, :, 2].max().item()
        
        d_near = min(d_near, d_near_z)
        d_far = max(d_far, d_far_z)
        
        d_near = min(d_near - self.depth_extend_margin, 0.01)
        d_far = d_far + self.depth_extend_margin
        
        depths = (depth_all - d_near)/(d_far-d_near)            
        depths_dn = nn.functional.interpolate(
                depths, scale_factor=1.0 / self.stride, mode="nearest")
        depths_dnG = depths_dn*Dz
        
        #Step3: initial the regular grid   
        gridx = torch.linspace(0, W//self.stride - 1, W//self.stride)
        gridy = torch.linspace(0, H//self.stride - 1, H//self.stride)
        gridx, gridy = torch.meshgrid(gridx, gridy)
        gridxy = torch.stack([gridx, gridy], dim=-1).to(rgbds.device).permute(
            2, 1, 0
        ) # 2 H W

        gridxyz = torch.cat([gridxy[None,...].repeat(
                            depths_dn.shape[0],1,1,1), depths_dnG], dim=1)
        Fxy2yz = gridxyz[:,[1, 2], ...] - gridxyz[:,:2]
        Fxy2xz = gridxyz[:,[0, 2], ...] - gridxyz[:,:2]
        if getattr(self.args, "Embed3D", None) == True:
            gridxyz_nm = gridxyz.clone()
            gridxyz_nm[:,0,...] = (gridxyz_nm[:,0,...]-gridxyz_nm[:,0,...].min())/(gridxyz_nm[:,0,...].max()-gridxyz_nm[:,0,...].min())
            gridxyz_nm[:,1,...] = (gridxyz_nm[:,1,...]-gridxyz_nm[:,1,...].min())/(gridxyz_nm[:,1,...].max()-gridxyz_nm[:,1,...].min())
            gridxyz_nm[:,2,...] = (gridxyz_nm[:,2,...]-gridxyz_nm[:,2,...].min())/(gridxyz_nm[:,2,...].max()-gridxyz_nm[:,2,...].min())
            gridxyz_nm = 2*(gridxyz_nm-0.5)
            _,_,h4,w4 = gridxyz_nm.shape
            gridxyz_nm = gridxyz_nm.permute(0,2,3,1).reshape(S*h4*w4, 3)
            featPE = self.embed3d(gridxyz_nm).view(S, h4, w4, -1).permute(0,3,1,2)
            if fmaps_ is None:
                fmaps_ = torch.cat([self.fnet(rgbs_),featPE], dim=1) 
                fmaps_ = self.embedConv(fmaps_)
            else:
                fmaps_new = torch.cat([self.fnet(rgbs_[self.S // 2 :]),featPE[self.S // 2 :]], dim=1) 
                fmaps_new = self.embedConv(fmaps_new)
                fmaps_ = torch.cat(
                    [fmaps_[self.S // 2 :], fmaps_new], dim=0
                )
        else:        
            if fmaps_ is None:
                fmaps_ = self.fnet(rgbs_)
            else:
                fmaps_ = torch.cat(
                [fmaps_[self.S // 2 :], self.fnet(rgbs_[self.S // 2 :])], dim=0
                )

        fmapXY = fmaps_[:, :self.latent_dim].reshape(
            B, T, self.latent_dim, H // self.stride, W // self.stride
        )

        fmapYZ = softsplat(fmapXY[0], Fxy2yz, None,
                        strMode="avg", tenoutH=self.Dz, tenoutW=H//self.stride)
        fmapXZ = softsplat(fmapXY[0], Fxy2xz, None,
                            strMode="avg", tenoutH=self.Dz, tenoutW=W//self.stride)
        
        fmapYZ = self.headyz(fmapYZ)[None, ...]
        fmapXZ = self.headxz(fmapXZ)[None, ...]
        
        # scale the coords_init 
        coords_init = queries[:, :1] # B 1 N 3, the first frame
        coords_init[..., :2] /= float(self.stride)
        
        (featxy_init,
        featyz_init,
        featxz_init) = self.sample_trifeat(
            t=torch.zeros(B*queries.shape[2]),featMapxy=fmapXY,
            featMapyz=fmapYZ,featMapxz=fmapXZ,
            coords = coords_init # B 1 N 3
        )
        
        return torch.stack([featxy_init, featyz_init, featxz_init], dim=-1)