Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,455 Bytes
38e3f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from easydict import EasyDict as edict
from einops import rearrange
from sklearn.cluster import SpectralClustering
from spatracker.blocks import Lie
import matplotlib.pyplot as plt
import cv2
import torch.nn.functional as F
from spatracker.blocks import (
BasicEncoder,
CorrBlock,
EUpdateFormer,
FusionFormer,
pix2cam,
cam2pix,
edgeMat,
VitEncoder,
DPTEnc,
DPT_DINOv2,
Dinov2
)
from spatracker.feature_net import (
LocalSoftSplat
)
from spatracker.model_utils import (
meshgrid2d, bilinear_sample2d, smart_cat, sample_features5d, vis_PCA
)
from spatracker.embeddings import (
get_2d_embedding,
get_3d_embedding,
get_1d_sincos_pos_embed_from_grid,
get_2d_sincos_pos_embed,
get_3d_sincos_pos_embed_from_grid,
Embedder_Fourier,
)
import numpy as np
from spatracker.softsplat import softsplat
torch.manual_seed(0)
def get_points_on_a_grid(grid_size, interp_shape,
grid_center=(0, 0), device="cuda"):
if grid_size == 1:
return torch.tensor([interp_shape[1] / 2,
interp_shape[0] / 2], device=device)[
None, None
]
grid_y, grid_x = meshgrid2d(
1, grid_size, grid_size, stack=False, norm=False, device=device
)
step = interp_shape[1] // 64
if grid_center[0] != 0 or grid_center[1] != 0:
grid_y = grid_y - grid_size / 2.0
grid_x = grid_x - grid_size / 2.0
grid_y = step + grid_y.reshape(1, -1) / float(grid_size - 1) * (
interp_shape[0] - step * 2
)
grid_x = step + grid_x.reshape(1, -1) / float(grid_size - 1) * (
interp_shape[1] - step * 2
)
grid_y = grid_y + grid_center[0]
grid_x = grid_x + grid_center[1]
xy = torch.stack([grid_x, grid_y], dim=-1).to(device)
return xy
def sample_pos_embed(grid_size, embed_dim, coords):
if coords.shape[-1] == 2:
pos_embed = get_2d_sincos_pos_embed(embed_dim=embed_dim,
grid_size=grid_size)
pos_embed = (
torch.from_numpy(pos_embed)
.reshape(grid_size[0], grid_size[1], embed_dim)
.float()
.unsqueeze(0)
.to(coords.device)
)
sampled_pos_embed = bilinear_sample2d(
pos_embed.permute(0, 3, 1, 2),
coords[:, 0, :, 0], coords[:, 0, :, 1]
)
elif coords.shape[-1] == 3:
sampled_pos_embed = get_3d_sincos_pos_embed_from_grid(
embed_dim, coords[:, :1, ...]
).float()[:,0,...].permute(0, 2, 1)
return sampled_pos_embed
class FeatureExtractor(nn.Module):
def __init__(
self,
S=8,
stride=8,
add_space_attn=True,
num_heads=8,
hidden_size=384,
space_depth=12,
time_depth=12,
depth_extend_margin = 0.2,
args=edict({})
):
super(FeatureExtractor, self).__init__()
# step1: config the arch of the model
self.args=args
# step1.1: config the default value of the model
if getattr(args, "depth_color", None) == None:
self.args.depth_color = False
if getattr(args, "if_ARAP", None) == None:
self.args.if_ARAP = True
if getattr(args, "flash_attn", None) == None:
self.args.flash_attn = True
if getattr(args, "backbone", None) == None:
self.args.backbone = "CNN"
if getattr(args, "Nblock", None) == None:
self.args.Nblock = 0
if getattr(args, "Embed3D", None) == None:
self.args.Embed3D = True
# step1.2: config the model parameters
self.S = S
self.stride = stride
self.hidden_dim = 256
self.latent_dim = latent_dim = 128
self.b_latent_dim = self.latent_dim//3
self.corr_levels = 4
self.corr_radius = 3
self.add_space_attn = add_space_attn
self.lie = Lie()
self.depth_extend_margin = depth_extend_margin
# step2: config the model components
# @Encoder
self.fnet = BasicEncoder(input_dim=3,
output_dim=self.latent_dim, norm_fn="instance", dropout=0,
stride=stride, Embed3D=False
)
# conv head for the tri-plane features
self.headyz = nn.Sequential(
nn.Conv2d(self.latent_dim, self.latent_dim, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(self.latent_dim, self.latent_dim, 3, padding=1))
self.headxz = nn.Sequential(
nn.Conv2d(self.latent_dim, self.latent_dim, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(self.latent_dim, self.latent_dim, 3, padding=1))
# @UpdateFormer
self.updateformer = EUpdateFormer(
space_depth=space_depth,
time_depth=time_depth,
input_dim=456,
hidden_size=hidden_size,
num_heads=num_heads,
output_dim=latent_dim + 3,
mlp_ratio=4.0,
add_space_attn=add_space_attn,
flash=getattr(self.args, "flash_attn", True)
)
self.support_features = torch.zeros(100, 384).to("cuda") + 0.1
self.norm = nn.GroupNorm(1, self.latent_dim)
self.ffeat_updater = nn.Sequential(
nn.Linear(self.latent_dim, self.latent_dim),
nn.GELU(),
)
self.ffeatyz_updater = nn.Sequential(
nn.Linear(self.latent_dim, self.latent_dim),
nn.GELU(),
)
self.ffeatxz_updater = nn.Sequential(
nn.Linear(self.latent_dim, self.latent_dim),
nn.GELU(),
)
#TODO @NeuralArap: optimize the arap
self.embed_traj = Embedder_Fourier(
input_dim=5, max_freq_log2=5.0, N_freqs=3, include_input=True
)
self.embed3d = Embedder_Fourier(
input_dim=3, max_freq_log2=10.0, N_freqs=10, include_input=True
)
self.embedConv = nn.Conv2d(self.latent_dim+63,
self.latent_dim, 3, padding=1)
# @Vis_predictor
self.vis_predictor = nn.Sequential(
nn.Linear(128, 1),
)
self.embedProj = nn.Linear(63, 456)
self.zeroMLPflow = nn.Linear(195, 130)
def prepare_track(self, rgbds, queries):
"""
NOTE:
Normalized the rgbs and sorted the queries via their first appeared time
Args:
rgbds: the input rgbd images (B T 4 H W)
queries: the input queries (B N 4)
Return:
rgbds: the normalized rgbds (B T 4 H W)
queries: the sorted queries (B N 4)
track_mask:
"""
assert (rgbds.shape[2]==4) and (queries.shape[2]==4)
#Step1: normalize the rgbs input
device = rgbds.device
rgbds[:, :, :3, ...] = 2 * (rgbds[:, :, :3, ...] / 255.0) - 1.0
B, T, C, H, W = rgbds.shape
B, N, __ = queries.shape
self.traj_e = torch.zeros((B, T, N, 3), device=device)
self.vis_e = torch.zeros((B, T, N), device=device)
#Step2: sort the points via their first appeared time
first_positive_inds = queries[0, :, 0].long()
__, sort_inds = torch.sort(first_positive_inds, dim=0, descending=False)
inv_sort_inds = torch.argsort(sort_inds, dim=0)
first_positive_sorted_inds = first_positive_inds[sort_inds]
# check if can be inverse
assert torch.allclose(
first_positive_inds, first_positive_inds[sort_inds][inv_sort_inds]
)
# filter those points never appear points during 1 - T
ind_array = torch.arange(T, device=device)
ind_array = ind_array[None, :, None].repeat(B, 1, N)
track_mask = (ind_array >=
first_positive_inds[None, None, :]).unsqueeze(-1)
# scale the coords_init
coords_init = queries[:, :, 1:].reshape(B, 1, N, 3).repeat(
1, self.S, 1, 1
)
coords_init[..., :2] /= float(self.stride)
#Step3: initial the regular grid
gridx = torch.linspace(0, W//self.stride - 1, W//self.stride)
gridy = torch.linspace(0, H//self.stride - 1, H//self.stride)
gridx, gridy = torch.meshgrid(gridx, gridy)
gridxy = torch.stack([gridx, gridy], dim=-1).to(rgbds.device).permute(
2, 1, 0
)
vis_init = torch.ones((B, self.S, N, 1), device=device).float() * 10
# Step4: initial traj for neural arap
T_series = torch.linspace(0, 5, T).reshape(1, T, 1 , 1).cuda() # 1 T 1 1
T_series = T_series.repeat(B, 1, N, 1)
# get the 3d traj in the camera coordinates
intr_init = self.intrs[:,queries[0,:,0].long()]
Traj_series = pix2cam(queries[:,:,None,1:].double(), intr_init.double()) # [B S N 3]
#torch.inverse(intr_init.double())@queries[:,:,1:,None].double() # B N 3 1
Traj_series = Traj_series.repeat(1, 1, T, 1).permute(0, 2, 1, 3).float()
Traj_series = torch.cat([T_series, Traj_series], dim=-1)
# get the indicator for the neural arap
Traj_mask = -1e2*torch.ones_like(T_series)
Traj_series = torch.cat([Traj_series, Traj_mask], dim=-1)
return (
rgbds,
first_positive_inds,
first_positive_sorted_inds,
sort_inds, inv_sort_inds,
track_mask, gridxy, coords_init[..., sort_inds, :].clone(),
vis_init, Traj_series[..., sort_inds, :].clone()
)
def sample_trifeat(self, t,
coords,
featMapxy,
featMapyz,
featMapxz):
"""
Sample the features from the 5D triplane feature map 3*(B S C H W)
Args:
t: the time index
coords: the coordinates of the points B S N 3
featMapxy: the feature map B S C Hx Wy
featMapyz: the feature map B S C Hy Wz
featMapxz: the feature map B S C Hx Wz
"""
# get xy_t yz_t xz_t
queried_t = t.reshape(1, 1, -1, 1)
xy_t = torch.cat(
[queried_t, coords[..., [0,1]]],
dim=-1
)
yz_t = torch.cat(
[queried_t, coords[..., [1, 2]]],
dim=-1
)
xz_t = torch.cat(
[queried_t, coords[..., [0, 2]]],
dim=-1
)
featxy_init = sample_features5d(featMapxy, xy_t)
featyz_init = sample_features5d(featMapyz, yz_t)
featxz_init = sample_features5d(featMapxz, xz_t)
featxy_init = featxy_init.repeat(1, self.S, 1, 1)
featyz_init = featyz_init.repeat(1, self.S, 1, 1)
featxz_init = featxz_init.repeat(1, self.S, 1, 1)
return featxy_init, featyz_init, featxz_init
def forward(self, rgbds, queries, num_levels=4, feat_init=None,
is_train=False, intrs=None, wind_S=None):
'''
queries: given trajs (B, f, N, 3) [x, y, z], x, y in camera coordinate, z in depth (need to be normalized)
vis_init: visibility of the points (B, f, N) , 0 for invisible, 1 for visible
'''
B, T, C, H, W = rgbds.shape
Dz = W//self.stride
rgbs_ = rgbds[:, :, :3,...]
depth_all = rgbds[:, :, 3,...]
d_near = self.d_near = depth_all[depth_all>0.01].min().item()
d_far = self.d_far = depth_all[depth_all>0.01].max().item()
d_near_z = queries.reshape(B, -1, 3)[:, :, 2].min().item()
d_far_z = queries.reshape(B, -1, 3)[:, :, 2].max().item()
d_near = min(d_near, d_near_z)
d_far = max(d_far, d_far_z)
d_near = min(d_near - self.depth_extend_margin, 0.01)
d_far = d_far + self.depth_extend_margin
depths = (depth_all - d_near)/(d_far-d_near)
depths_dn = nn.functional.interpolate(
depths, scale_factor=1.0 / self.stride, mode="nearest")
depths_dnG = depths_dn*Dz
#Step3: initial the regular grid
gridx = torch.linspace(0, W//self.stride - 1, W//self.stride)
gridy = torch.linspace(0, H//self.stride - 1, H//self.stride)
gridx, gridy = torch.meshgrid(gridx, gridy)
gridxy = torch.stack([gridx, gridy], dim=-1).to(rgbds.device).permute(
2, 1, 0
) # 2 H W
gridxyz = torch.cat([gridxy[None,...].repeat(
depths_dn.shape[0],1,1,1), depths_dnG], dim=1)
Fxy2yz = gridxyz[:,[1, 2], ...] - gridxyz[:,:2]
Fxy2xz = gridxyz[:,[0, 2], ...] - gridxyz[:,:2]
if getattr(self.args, "Embed3D", None) == True:
gridxyz_nm = gridxyz.clone()
gridxyz_nm[:,0,...] = (gridxyz_nm[:,0,...]-gridxyz_nm[:,0,...].min())/(gridxyz_nm[:,0,...].max()-gridxyz_nm[:,0,...].min())
gridxyz_nm[:,1,...] = (gridxyz_nm[:,1,...]-gridxyz_nm[:,1,...].min())/(gridxyz_nm[:,1,...].max()-gridxyz_nm[:,1,...].min())
gridxyz_nm[:,2,...] = (gridxyz_nm[:,2,...]-gridxyz_nm[:,2,...].min())/(gridxyz_nm[:,2,...].max()-gridxyz_nm[:,2,...].min())
gridxyz_nm = 2*(gridxyz_nm-0.5)
_,_,h4,w4 = gridxyz_nm.shape
gridxyz_nm = gridxyz_nm.permute(0,2,3,1).reshape(S*h4*w4, 3)
featPE = self.embed3d(gridxyz_nm).view(S, h4, w4, -1).permute(0,3,1,2)
if fmaps_ is None:
fmaps_ = torch.cat([self.fnet(rgbs_),featPE], dim=1)
fmaps_ = self.embedConv(fmaps_)
else:
fmaps_new = torch.cat([self.fnet(rgbs_[self.S // 2 :]),featPE[self.S // 2 :]], dim=1)
fmaps_new = self.embedConv(fmaps_new)
fmaps_ = torch.cat(
[fmaps_[self.S // 2 :], fmaps_new], dim=0
)
else:
if fmaps_ is None:
fmaps_ = self.fnet(rgbs_)
else:
fmaps_ = torch.cat(
[fmaps_[self.S // 2 :], self.fnet(rgbs_[self.S // 2 :])], dim=0
)
fmapXY = fmaps_[:, :self.latent_dim].reshape(
B, T, self.latent_dim, H // self.stride, W // self.stride
)
fmapYZ = softsplat(fmapXY[0], Fxy2yz, None,
strMode="avg", tenoutH=self.Dz, tenoutW=H//self.stride)
fmapXZ = softsplat(fmapXY[0], Fxy2xz, None,
strMode="avg", tenoutH=self.Dz, tenoutW=W//self.stride)
fmapYZ = self.headyz(fmapYZ)[None, ...]
fmapXZ = self.headxz(fmapXZ)[None, ...]
# scale the coords_init
coords_init = queries[:, :1] # B 1 N 3, the first frame
coords_init[..., :2] /= float(self.stride)
(featxy_init,
featyz_init,
featxz_init) = self.sample_trifeat(
t=torch.zeros(B*queries.shape[2]),featMapxy=fmapXY,
featMapyz=fmapYZ,featMapxz=fmapXZ,
coords = coords_init # B 1 N 3
)
return torch.stack([featxy_init, featyz_init, featxz_init], dim=-1)
|