File size: 9,535 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import math
import torch
import torch.nn as nn
from einops import rearrange
from typing import List, Tuple
from cameractrl.models.motion_module import TemporalTransformerBlock


def get_parameter_dtype(parameter: torch.nn.Module):
    try:
        params = tuple(parameter.parameters())
        if len(params) > 0:
            return params[0].dtype

        buffers = tuple(parameter.buffers())
        if len(buffers) > 0:
            return buffers[0].dtype

    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, torch.Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


class PoseAdaptor(nn.Module):
    def __init__(self, unet, pose_encoder):
        super().__init__()
        self.unet = unet
        self.pose_encoder = pose_encoder

    def forward(self, noisy_latents, c_noise, encoder_hidden_states, added_time_ids, pose_embedding):
        assert pose_embedding.ndim == 5
        pose_embedding_features = self.pose_encoder(pose_embedding)      # b c f h w
        noise_pred = self.unet(noisy_latents,
                               c_noise,
                               encoder_hidden_states,
                               added_time_ids=added_time_ids,
                               pose_features=pose_embedding_features).sample
        return noise_pred


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResnetBlock(nn.Module):

    def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
        super().__init__()
        ps = ksize // 2
        if in_c != out_c or sk == False:
            self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
        else:
            self.in_conv = None
        self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
        self.act = nn.ReLU()
        self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
        if sk == False:
            self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
        else:
            self.skep = None

        self.down = down
        if self.down == True:
            self.down_opt = Downsample(in_c, use_conv=use_conv)

    def forward(self, x):
        if self.down == True:
            x = self.down_opt(x)
        if self.in_conv is not None:  # edit
            x = self.in_conv(x)

        h = self.block1(x)
        h = self.act(h)
        h = self.block2(h)
        if self.skep is not None:
            return h + self.skep(x)
        else:
            return h + x


class PositionalEncoding(nn.Module):
    def __init__(
            self,
            d_model,
            dropout=0.,
            max_len=32,
    ):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
        pe = torch.zeros(1, max_len, d_model)
        pe[0, :, 0::2, ...] = torch.sin(position * div_term)
        pe[0, :, 1::2, ...] = torch.cos(position * div_term)
        pe.unsqueeze_(-1).unsqueeze_(-1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:, :x.size(1), ...]
        return self.dropout(x)


class CameraPoseEncoder(nn.Module):

    def __init__(self,
                 downscale_factor,
                 channels=[320, 640, 1280, 1280],
                 nums_rb=3,
                 cin=64,
                 ksize=3,
                 sk=False,
                 use_conv=True,
                 compression_factor=1,
                 temporal_attention_nhead=8,
                 attention_block_types=("Temporal_Self", ),
                 temporal_position_encoding=False,
                 temporal_position_encoding_max_len=16,
                 rescale_output_factor=1.0):
        super(CameraPoseEncoder, self).__init__()
        self.unshuffle = nn.PixelUnshuffle(downscale_factor)
        self.channels = channels
        self.nums_rb = nums_rb
        self.encoder_down_conv_blocks = nn.ModuleList()
        self.encoder_down_attention_blocks = nn.ModuleList()
        for i in range(len(channels)):
            conv_layers = nn.ModuleList()
            temporal_attention_layers = nn.ModuleList()
            for j in range(nums_rb):
                if j == 0 and i != 0:
                    in_dim = channels[i - 1]
                    out_dim = int(channels[i] / compression_factor)
                    conv_layer = ResnetBlock(in_dim, out_dim, down=True, ksize=ksize, sk=sk, use_conv=use_conv)
                elif j == 0:
                    in_dim = channels[0]
                    out_dim = int(channels[i] / compression_factor)
                    conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv)
                elif j == nums_rb - 1:
                    in_dim = channels[i] / compression_factor
                    out_dim = channels[i]
                    conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv)
                else:
                    in_dim = int(channels[i] / compression_factor)
                    out_dim = int(channels[i] / compression_factor)
                    conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv)
                temporal_attention_layer = TemporalTransformerBlock(dim=out_dim,
                                                                    num_attention_heads=temporal_attention_nhead,
                                                                    attention_head_dim=int(out_dim / temporal_attention_nhead),
                                                                    attention_block_types=attention_block_types,
                                                                    dropout=0.0,
                                                                    cross_attention_dim=None,
                                                                    temporal_position_encoding=temporal_position_encoding,
                                                                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                                                                    rescale_output_factor=rescale_output_factor)
                conv_layers.append(conv_layer)
                temporal_attention_layers.append(temporal_attention_layer)
            self.encoder_down_conv_blocks.append(conv_layers)
            self.encoder_down_attention_blocks.append(temporal_attention_layers)

        self.encoder_conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def forward(self, x):
        # unshuffle
        bs = x.shape[0]
        x = rearrange(x, "b f c h w -> (b f) c h w")
        x = self.unshuffle(x)
        # extract features
        features = []
        x = self.encoder_conv_in(x)
        for res_block, attention_block in zip(self.encoder_down_conv_blocks, self.encoder_down_attention_blocks):
            for res_layer, attention_layer in zip(res_block, attention_block):
                x = res_layer(x)
                h, w = x.shape[-2:]
                x = rearrange(x, '(b f) c h w -> (b h w) f c', b=bs)
                x = attention_layer(x)
                x = rearrange(x, '(b h w) f c -> (b f) c h w', h=h, w=w)
            features.append(rearrange(x, '(b f) c h w -> b c f h w', b=bs))
        return features