File size: 8,769 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torch.nn as nn

from typing import Optional
from diffusers.models.transformer_temporal import TransformerTemporalModelOutput
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.resnet import AlphaBlender
from cameractrl.models.attention import TemporalPoseCondTransformerBlock


class TransformerSpatioTemporalModelPoseCond(nn.Module):
    """
        A Transformer model for video-like data.

        Parameters:
            num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
            attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
            in_channels (`int`, *optional*):
                The number of channels in the input and output (specify if the input is **continuous**).
            out_channels (`int`, *optional*):
                The number of channels in the output (specify if the input is **continuous**).
            num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
            cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        """

    def __init__(
            self,
            num_attention_heads: int = 16,
            attention_head_dim: int = 88,
            in_channels: int = 320,
            out_channels: Optional[int] = None,
            num_layers: int = 1,
            cross_attention_dim: Optional[int] = None,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim

        inner_dim = num_attention_heads * attention_head_dim
        self.inner_dim = inner_dim

        # 2. Define input layers
        self.in_channels = in_channels
        self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6)
        self.proj_in = nn.Linear(in_channels, inner_dim)

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                )
                for d in range(num_layers)
            ]
        )

        time_mix_inner_dim = inner_dim
        self.temporal_transformer_blocks = nn.ModuleList(
            [
                TemporalPoseCondTransformerBlock(
                    inner_dim,
                    time_mix_inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                )
                for _ in range(num_layers)
            ]
        )

        time_embed_dim = in_channels * 4
        self.time_pos_embed = TimestepEmbedding(in_channels, time_embed_dim, out_dim=in_channels)
        self.time_proj = Timesteps(in_channels, True, 0)
        self.time_mixer = AlphaBlender(alpha=0.5, merge_strategy="learned_with_images")

        # 4. Define output layers
        self.out_channels = in_channels if out_channels is None else out_channels
        # TODO: should use out_channels for continuous projections
        self.proj_out = nn.Linear(inner_dim, in_channels)

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,            # [bs * frame, c, h, w]
        encoder_hidden_states: Optional[torch.Tensor] = None,        # [bs * frame, 1, c]
        image_only_indicator: Optional[torch.Tensor] = None,         # [bs, frame]
        pose_feature: Optional[torch.Tensor] = None,                # [bs, c, frame, h, w]
        return_dict: bool = True,
    ):
        """
        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input hidden_states.
            num_frames (`int`):
                The number of frames to be processed per batch. This is used to reshape the hidden states.
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            image_only_indicator (`torch.LongTensor` of shape `(batch size, num_frames)`, *optional*):
                A tensor indicating whether the input contains only images. 1 indicates that the input contains only
                images, 0 indicates that the input contains video frames.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_temporal.TransformerTemporalModelOutput`] instead of a
                plain tuple.

        Returns:
            [`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
                returned, otherwise a `tuple` where the first element is the sample tensor.
        """
        # 1. Input
        batch_frames, _, height, width = hidden_states.shape
        num_frames = image_only_indicator.shape[-1]
        batch_size = batch_frames // num_frames

        time_context = encoder_hidden_states        # [bs * frame, 1, c]
        time_context_first_timestep = time_context[None, :].reshape(
            batch_size, num_frames, -1, time_context.shape[-1]
        )[:, 0]     # [bs, frame, c]
        time_context = time_context_first_timestep[:, None].broadcast_to(
            batch_size, height * width, time_context.shape[-2], time_context.shape[-1]
        )           # [bs, h*w, 1, c]
        time_context = time_context.reshape(batch_size * height * width, -1, time_context.shape[-1])    # [bs * h * w, 1, c]

        residual = hidden_states

        hidden_states = self.norm(hidden_states)        # [bs * frame, c, h, w]
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_frames, height * width, inner_dim)  # [bs * frame, h * w, c]
        hidden_states = self.proj_in(hidden_states)     # [bs * frame, h * w, c]

        num_frames_emb = torch.arange(num_frames, device=hidden_states.device)
        num_frames_emb = num_frames_emb.repeat(batch_size, 1)       # [bs, frame]
        num_frames_emb = num_frames_emb.reshape(-1)     # [bs * frame]
        t_emb = self.time_proj(num_frames_emb)          # [bs * frame, c]

        # `Timesteps` does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=hidden_states.dtype)

        emb = self.time_pos_embed(t_emb)
        emb = emb[:, None, :]       # [bs * frame, 1, c]

        # 2. Blocks
        for block, temporal_block in zip(self.transformer_blocks, self.temporal_transformer_blocks):
            if self.training and self.gradient_checkpointing:
                hidden_states = torch.utils.checkpoint.checkpoint(
                    block,
                    hidden_states,
                    None,
                    encoder_hidden_states,
                    None,
                    use_reentrant=False,
                )
            else:
                hidden_states = block(
                    hidden_states,          # [bs * frame, h * w, c]
                    encoder_hidden_states=encoder_hidden_states,    # [bs * frame, 1, c]
                )               # [bs * frame, h * w, c]

            hidden_states_mix = hidden_states
            hidden_states_mix = hidden_states_mix + emb

            hidden_states_mix = temporal_block(
                hidden_states_mix,      # [bs * frame, h * w, c]
                num_frames=num_frames,
                encoder_hidden_states=time_context,     # [bs * h * w, 1, c]
                pose_feature=pose_feature
            )
            hidden_states = self.time_mixer(
                x_spatial=hidden_states,
                x_temporal=hidden_states_mix,
                image_only_indicator=image_only_indicator,
            )

        # 3. Output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states.reshape(batch_frames, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()

        output = hidden_states + residual

        if not return_dict:
            return (output,)

        return TransformerTemporalModelOutput(sample=output)