File size: 4,875 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import functools
import logging
import sys
import imageio
import atexit
import importlib
import torch
import torchvision
import numpy as np
from termcolor import colored

from einops import rearrange


def instantiate_from_config(config, **additional_kwargs):
    if not "target" in config:
        if config == '__is_first_stage__':
            return None
        elif config == "__is_unconditional__":
            return None
        raise KeyError("Expected key `target` to instantiate.")

    additional_kwargs.update(config.get("kwargs", dict()))
    return get_obj_from_str(config["target"])(**additional_kwargs)


def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)


# Logger utils are copied from detectron2
class _ColorfulFormatter(logging.Formatter):
    def __init__(self, *args, **kwargs):
        self._root_name = kwargs.pop("root_name") + "."
        self._abbrev_name = kwargs.pop("abbrev_name", "")
        if len(self._abbrev_name):
            self._abbrev_name = self._abbrev_name + "."
        super(_ColorfulFormatter, self).__init__(*args, **kwargs)

    def formatMessage(self, record):
        record.name = record.name.replace(self._root_name, self._abbrev_name)
        log = super(_ColorfulFormatter, self).formatMessage(record)
        if record.levelno == logging.WARNING:
            prefix = colored("WARNING", "red", attrs=["blink"])
        elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL:
            prefix = colored("ERROR", "red", attrs=["blink", "underline"])
        else:
            return log
        return prefix + " " + log


# cache the opened file object, so that different calls to `setup_logger`
# with the same file name can safely write to the same file.
@functools.lru_cache(maxsize=None)
def _cached_log_stream(filename):
    # use 1K buffer if writing to cloud storage
    io = open(filename, "a", buffering=1024 if "://" in filename else -1)
    atexit.register(io.close)
    return io

@functools.lru_cache()
def setup_logger(output, distributed_rank, color=True, name='AnimateDiff', abbrev_name=None):
    logger = logging.getLogger(name)
    logger.setLevel(logging.DEBUG)
    logger.propagate = False

    if abbrev_name is None:
        abbrev_name = 'AD'
    plain_formatter = logging.Formatter(
        "[%(asctime)s] %(name)s:%(lineno)d %(levelname)s: %(message)s", datefmt="%m/%d %H:%M:%S"
    )

    # stdout logging: master only
    if distributed_rank == 0:
        ch = logging.StreamHandler(stream=sys.stdout)
        ch.setLevel(logging.DEBUG)
        if color:
            formatter = _ColorfulFormatter(
                colored("[%(asctime)s %(name)s:%(lineno)d]: ", "green") + "%(message)s",
                datefmt="%m/%d %H:%M:%S",
                root_name=name,
                abbrev_name=str(abbrev_name),
            )
        else:
            formatter = plain_formatter
        ch.setFormatter(formatter)
        logger.addHandler(ch)

    # file logging: all workers
    if output is not None:
        if output.endswith(".txt") or output.endswith(".log"):
            filename = output
        else:
            filename = os.path.join(output, "log.txt")
        if distributed_rank > 0:
            filename = filename + ".rank{}".format(distributed_rank)
        os.makedirs(os.path.dirname(filename), exist_ok=True)

        fh = logging.StreamHandler(_cached_log_stream(filename))
        fh.setLevel(logging.DEBUG)
        fh.setFormatter(plain_formatter)
        logger.addHandler(fh)

    return logger


def format_time(elapsed_time):
    # Time thresholds
    minute = 60
    hour = 60 * minute
    day = 24 * hour

    days, remainder = divmod(elapsed_time, day)
    hours, remainder = divmod(remainder, hour)
    minutes, seconds = divmod(remainder, minute)

    formatted_time = ""

    if days > 0:
        formatted_time += f"{int(days)} days "
    if hours > 0:
        formatted_time += f"{int(hours)} hours "
    if minutes > 0:
        formatted_time += f"{int(minutes)} minutes "
    if seconds > 0:
        formatted_time += f"{seconds:.2f} seconds"

    return formatted_time.strip()