File size: 4,706 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F


class ImageEncoder(nn.Module):
    def __init__(
        self,
        trunk: nn.Module,
        neck: nn.Module,
        scalp: int = 0,
    ):
        super().__init__()
        self.trunk = trunk
        self.neck = neck
        self.scalp = scalp
        assert (
            self.trunk.channel_list == self.neck.backbone_channel_list
        ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"

    def forward(self, sample: torch.Tensor):
        # Forward through backbone
        features, pos = self.neck(self.trunk(sample))
        if self.scalp > 0:
            # Discard the lowest resolution features
            features, pos = features[: -self.scalp], pos[: -self.scalp]

        src = features[-1]
        output = {
            "vision_features": src,
            "vision_pos_enc": pos,
            "backbone_fpn": features,
        }
        return output


class FpnNeck(nn.Module):
    """
    A modified variant of Feature Pyramid Network (FPN) neck
    (we remove output conv and also do bicubic interpolation similar to ViT
    pos embed interpolation)
    """

    def __init__(
        self,
        position_encoding: nn.Module,
        d_model: int,
        backbone_channel_list: List[int],
        kernel_size: int = 1,
        stride: int = 1,
        padding: int = 0,
        fpn_interp_model: str = "bilinear",
        fuse_type: str = "sum",
        fpn_top_down_levels: Optional[List[int]] = None,
    ):
        """Initialize the neck
        :param trunk: the backbone
        :param position_encoding: the positional encoding to use
        :param d_model: the dimension of the model
        :param neck_norm: the normalization to use
        """
        super().__init__()
        self.position_encoding = position_encoding
        self.convs = nn.ModuleList()
        self.backbone_channel_list = backbone_channel_list
        self.d_model = d_model
        for dim in backbone_channel_list:
            current = nn.Sequential()
            current.add_module(
                "conv",
                nn.Conv2d(
                    in_channels=dim,
                    out_channels=d_model,
                    kernel_size=kernel_size,
                    stride=stride,
                    padding=padding,
                ),
            )

            self.convs.append(current)
        self.fpn_interp_model = fpn_interp_model
        assert fuse_type in ["sum", "avg"]
        self.fuse_type = fuse_type

        # levels to have top-down features in its outputs
        # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
        # have top-down propagation, while outputs of level 0 and level 1 have only
        # lateral features from the same backbone level.
        if fpn_top_down_levels is None:
            # default is to have top-down features on all levels
            fpn_top_down_levels = range(len(self.convs))
        self.fpn_top_down_levels = list(fpn_top_down_levels)

    def forward(self, xs: List[torch.Tensor]):

        out = [None] * len(self.convs)
        pos = [None] * len(self.convs)
        assert len(xs) == len(self.convs)
        # fpn forward pass
        # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
        prev_features = None
        # forward in top-down order (from low to high resolution)
        n = len(self.convs) - 1
        for i in range(n, -1, -1):
            x = xs[i]
            lateral_features = self.convs[n - i](x)
            if i in self.fpn_top_down_levels and prev_features is not None:
                top_down_features = F.interpolate(
                    prev_features.to(dtype=torch.float32),
                    scale_factor=2.0,
                    mode=self.fpn_interp_model,
                    align_corners=(
                        None if self.fpn_interp_model == "nearest" else False
                    ),
                    antialias=False,
                )
                prev_features = lateral_features + top_down_features
                if self.fuse_type == "avg":
                    prev_features /= 2
            else:
                prev_features = lateral_features
            x_out = prev_features
            out[i] = x_out
            pos[i] = self.position_encoding(x_out).to(x_out.dtype)

        return out, pos