Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,659 Bytes
38e3f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import os
import torch
import numpy as np
import torch.nn.functional as F
import cv2
import torchvision
from PIL import Image
from einops import rearrange
import tempfile
from objctrl_2_5d.utils.objmask_util import RT2Plucker, Unprojected, roll_with_ignore_multidim, dilate_mask_pytorch
from objctrl_2_5d.utils.filter_utils import get_freq_filter, freq_mix_3d
DEBUG = False
if DEBUG:
cur_OUTPUT_PATH = 'outputs/tmp'
os.makedirs(cur_OUTPUT_PATH, exist_ok=True)
# num_inference_steps=25
min_guidance_scale = 1.0
max_guidance_scale = 3.0
area_ratio = 0.3
depth_scale_ = 5.2
center_margin = 10
height, width = 320, 576
num_frames = 14
intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]])
intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4]
fx = intrinsics[0, 0] / width
fy = intrinsics[0, 1] / height
cx = intrinsics[0, 2] / width
cy = intrinsics[0, 3] / height
down_scale = 8
H, W = height // down_scale, width // down_scale
K = np.array([[width / down_scale, 0, W / 2], [0, width / down_scale, H / 2], [0, 0, 1]])
def run(pipeline, device):
def run_objctrl_2_5d(condition_image,
mask,
depth,
RTs,
bg_mode,
shared_wapring_latents,
scale_wise_masks,
rescale,
seed,
ds, dt,
num_inference_steps=25):
seed = int(seed)
center_h_margin, center_w_margin = center_margin, center_margin
depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
if rescale > 0:
depth_rescale = round(depth_scale_ * rescale / depth_center, 2)
else:
depth_rescale = 1.0
depth = depth * depth_rescale
depth_down = F.interpolate(torch.tensor(depth).unsqueeze(0).unsqueeze(0),
(H, W), mode='bilinear', align_corners=False).squeeze().numpy() # [H, W]
## latent
generator = torch.Generator()
generator.manual_seed(seed)
latents_org = pipeline.prepare_latents(
1,
14,
8,
height,
width,
pipeline.dtype,
device,
generator,
None,
)
latents_org = latents_org / pipeline.scheduler.init_noise_sigma
cur_plucker_embedding, _, _ = RT2Plucker(RTs, RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
cur_plucker_embedding = cur_plucker_embedding.to(device)
cur_plucker_embedding = cur_plucker_embedding[None, ...] # b 6 f h w
cur_plucker_embedding = cur_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
cur_plucker_embedding = cur_plucker_embedding[:, :num_frames, ...]
cur_pose_features = pipeline.pose_encoder(cur_plucker_embedding)
# bg_mode = ["Fixed", "Reverse", "Free"]
if bg_mode == "Fixed":
fix_RTs = np.repeat(RTs[0][None, ...], num_frames, axis=0) # [n_frame, 4, 3]
fix_plucker_embedding, _, _ = RT2Plucker(fix_RTs, num_frames, (height, width), fx, fy, cx, cy) # 6, V, H, W
fix_plucker_embedding = fix_plucker_embedding.to(device)
fix_plucker_embedding = fix_plucker_embedding[None, ...] # b 6 f h w
fix_plucker_embedding = fix_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
fix_plucker_embedding = fix_plucker_embedding[:, :num_frames, ...]
fix_pose_features = pipeline.pose_encoder(fix_plucker_embedding)
elif bg_mode == "Reverse":
bg_plucker_embedding, _, _ = RT2Plucker(RTs[::-1], RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
bg_plucker_embedding = bg_plucker_embedding.to(device)
bg_plucker_embedding = bg_plucker_embedding[None, ...] # b 6 f h w
bg_plucker_embedding = bg_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
bg_plucker_embedding = bg_plucker_embedding[:, :num_frames, ...]
fix_pose_features = pipeline.pose_encoder(bg_plucker_embedding)
else:
fix_pose_features = None
#### preparing mask
mask = Image.fromarray(mask)
mask.save(f'{cur_OUTPUT_PATH}/org_mask_big.png')
mask = Image.open(f'{cur_OUTPUT_PATH}/org_mask_big.png')
mask = mask.resize((W, H))
mask = np.array(mask).astype(np.float32)
mask = np.expand_dims(mask, axis=-1)
# visulize mask
if DEBUG:
mask_sum_vis = mask[..., 0]
mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
mask_sum_vis = Image.fromarray(mask_sum_vis)
mask_sum_vis.save(f'{cur_OUTPUT_PATH}/org_mask.png')
try:
warped_masks = Unprojected(mask, depth_down, RTs, H=H, W=W, K=K)
warped_masks.insert(0, mask)
except:
# mask to bbox
print(f'!!! Mask is too small to warp; mask to bbox')
mask = mask[:, :, 0]
coords = cv2.findNonZero(mask)
x, y, w, h = cv2.boundingRect(coords)
# mask[y:y+h, x:x+w] = 1.0
center_x, center_y = x + w // 2, y + h // 2
center_z = depth_down[center_y, center_x]
# RTs [n_frame, 3, 4] to [n_frame, 4, 4] , add [0, 0, 0, 1]
RTs = np.concatenate([RTs, np.array([[[0, 0, 0, 1]]] * num_frames)], axis=1)
# RTs: world to camera
P0 = np.array([center_x, center_y, 1])
Pc0 = np.linalg.inv(K) @ P0 * center_z
pw = np.linalg.inv(RTs[0]) @ np.array([Pc0[0], Pc0[1], center_z, 1]) # [4]
P = [np.array([center_x, center_y])]
for i in range(1, num_frames):
Pci = RTs[i] @ pw
Pi = K @ Pci[:3] / Pci[2]
P.append(Pi[:2])
warped_masks = [mask]
for i in range(1, num_frames):
shift_x = int(round(P[i][0] - P[0][0]))
shift_y = int(round(P[i][1] - P[0][1]))
cur_mask = roll_with_ignore_multidim(mask, [shift_y, shift_x])
warped_masks.append(cur_mask)
warped_masks = [v[..., None] for v in warped_masks]
warped_masks = np.stack(warped_masks, axis=0) # [f, h, w]
warped_masks = np.repeat(warped_masks, 3, axis=-1) # [f, h, w, 3]
mask_sum = np.sum(warped_masks, axis=0, keepdims=True) # [1, H, W, 3]
mask_sum[mask_sum > 1.0] = 1.0
mask_sum = mask_sum[0,:,:, 0]
if DEBUG:
## visulize warp mask
warp_masks_vis = torch.tensor(warped_masks)
warp_masks_vis = (warp_masks_vis * 255.0).to(torch.uint8)
torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warped_masks.mp4', warp_masks_vis, fps=10, video_codec='h264', options={'crf': '10'})
# visulize mask
mask_sum_vis = mask_sum
mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
mask_sum_vis = Image.fromarray(mask_sum_vis)
mask_sum_vis.save(f'{cur_OUTPUT_PATH}/merged_mask.png')
if scale_wise_masks:
min_area = H * W * area_ratio # cal in downscale
non_zero_len = mask_sum.sum()
print(f'non_zero_len: {non_zero_len}, min_area: {min_area}')
if non_zero_len > min_area:
kernel_sizes = [1, 1, 1, 3]
elif non_zero_len > min_area * 0.5:
kernel_sizes = [3, 1, 1, 5]
else:
kernel_sizes = [5, 3, 3, 7]
else:
kernel_sizes = [1, 1, 1, 1]
mask = torch.from_numpy(mask_sum) # [h, w]
mask = mask[None, None, ...] # [1, 1, h, w]
mask = F.interpolate(mask, (height, width), mode='bilinear', align_corners=False) # [1, 1, H, W]
# mask = mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
mask = mask.to(pipeline.dtype).to(device)
##### Mask End ######
### Got blending pose features Start ###
pose_features = []
for i in range(0, len(cur_pose_features)):
kernel_size = kernel_sizes[i]
h, w = cur_pose_features[i].shape[-2:]
if fix_pose_features is None:
pose_features.append(torch.zeros_like(cur_pose_features[i]))
else:
pose_features.append(fix_pose_features[i])
cur_mask = F.interpolate(mask, (h, w), mode='bilinear', align_corners=False)
cur_mask = dilate_mask_pytorch(cur_mask, kernel_size=kernel_size) # [1, 1, H, W]
cur_mask = cur_mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
if DEBUG:
# visulize mask
mask_vis = cur_mask[0, 0].cpu().numpy() * 255.0
mask_vis = Image.fromarray(mask_vis.astype(np.uint8))
mask_vis.save(f'{cur_OUTPUT_PATH}/mask_k{kernel_size}_scale{i}.png')
cur_mask = cur_mask[None, ...] # [1, 1, f, H, W]
pose_features[-1] = cur_pose_features[i] * cur_mask + pose_features[-1] * (1 - cur_mask)
### Got blending pose features End ###
##### Warp Noise Start ######
if shared_wapring_latents:
noise = latents_org[0, 0].data.cpu().numpy().copy() #[14, 4, 40, 72]
noise = np.transpose(noise, (1, 2, 0)) # [40, 72, 4]
try:
warp_noise = Unprojected(noise, depth_down, RTs, H=H, W=W, K=K)
warp_noise.insert(0, noise)
except:
print(f'!!! Noise is too small to warp; mask to bbox')
warp_noise = [noise]
for i in range(1, num_frames):
shift_x = int(round(P[i][0] - P[0][0]))
shift_y = int(round(P[i][1] - P[0][1]))
cur_noise= roll_with_ignore_multidim(noise, [shift_y, shift_x])
warp_noise.append(cur_noise)
warp_noise = np.stack(warp_noise, axis=0) # [f, h, w, 4]
if DEBUG:
## visulize warp noise
warp_noise_vis = torch.tensor(warp_noise)[..., :3] * torch.tensor(warped_masks)
warp_noise_vis = (warp_noise_vis - warp_noise_vis.min()) / (warp_noise_vis.max() - warp_noise_vis.min())
warp_noise_vis = (warp_noise_vis * 255.0).to(torch.uint8)
torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warp_noise.mp4', warp_noise_vis, fps=10, video_codec='h264', options={'crf': '10'})
warp_latents = torch.tensor(warp_noise).permute(0, 3, 1, 2).to(latents_org.device).to(latents_org.dtype) # [frame, 4, H, W]
warp_latents = warp_latents.unsqueeze(0) # [1, frame, 4, H, W]
warped_masks = torch.tensor(warped_masks).permute(0, 3, 1, 2).unsqueeze(0) # [1, frame, 3, H, W]
mask_extend = torch.concat([warped_masks, warped_masks[:,:,0:1]], dim=2) # [1, frame, 4, H, W]
mask_extend = mask_extend.to(latents_org.device).to(latents_org.dtype)
warp_latents = warp_latents * mask_extend + latents_org * (1 - mask_extend)
warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
random_noise = latents_org.clone().permute(0, 2, 1, 3, 4)
filter_shape = warp_latents.shape
freq_filter = get_freq_filter(
filter_shape,
device = device,
filter_type='butterworth',
n=4,
d_s=ds,
d_t=dt
)
warp_latents = freq_mix_3d(warp_latents, random_noise, freq_filter)
warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
else:
warp_latents = latents_org.clone()
generator.manual_seed(42)
with torch.no_grad():
result = pipeline(
image=condition_image,
pose_embedding=cur_plucker_embedding,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
min_guidance_scale=min_guidance_scale,
max_guidance_scale=max_guidance_scale,
do_image_process=True,
generator=generator,
output_type='pt',
pose_features= pose_features,
latents = warp_latents
).frames[0].cpu() #[f, c, h, w]
result = rearrange(result, 'f c h w -> f h w c')
result = (result * 255.0).to(torch.uint8)
video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
torchvision.io.write_video(video_path, result, fps=10, video_codec='h264', options={'crf': '8'})
return video_path
return run_objctrl_2_5d
|