File size: 13,659 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import torch
import numpy as np
import torch.nn.functional as F
import cv2
import torchvision
from PIL import Image
from einops import rearrange
import tempfile

from objctrl_2_5d.utils.objmask_util import RT2Plucker, Unprojected, roll_with_ignore_multidim, dilate_mask_pytorch
from objctrl_2_5d.utils.filter_utils import get_freq_filter, freq_mix_3d

DEBUG = False

if DEBUG:
    cur_OUTPUT_PATH = 'outputs/tmp'
    os.makedirs(cur_OUTPUT_PATH, exist_ok=True)

# num_inference_steps=25
min_guidance_scale = 1.0
max_guidance_scale = 3.0

area_ratio = 0.3
depth_scale_ = 5.2
center_margin = 10

height, width = 320, 576
num_frames = 14

intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]])
intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4]
fx = intrinsics[0, 0] / width
fy = intrinsics[0, 1] / height
cx = intrinsics[0, 2] / width
cy = intrinsics[0, 3] / height

down_scale = 8
H, W = height // down_scale, width // down_scale
K = np.array([[width / down_scale, 0, W / 2], [0, width / down_scale, H / 2], [0, 0, 1]])

def run(pipeline, device):
    def run_objctrl_2_5d(condition_image, 
                         mask, 
                         depth, 
                         RTs, 
                         bg_mode, 
                         shared_wapring_latents, 
                         scale_wise_masks, 
                         rescale, 
                         seed, 
                         ds, dt, 
                         num_inference_steps=25):
        
        seed = int(seed)
                
        center_h_margin, center_w_margin = center_margin, center_margin
        depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
        
        if rescale > 0:
            depth_rescale = round(depth_scale_ * rescale / depth_center, 2)
        else:
            depth_rescale = 1.0
            
        depth = depth * depth_rescale
        
        depth_down = F.interpolate(torch.tensor(depth).unsqueeze(0).unsqueeze(0), 
                                    (H, W), mode='bilinear', align_corners=False).squeeze().numpy() # [H, W]
        
        ## latent
        generator = torch.Generator()
        generator.manual_seed(seed)
        
        latents_org = pipeline.prepare_latents(
                1,
                14,
                8,
                height,
                width,
                pipeline.dtype,
                device,
                generator,
                None,
            )
        latents_org = latents_org / pipeline.scheduler.init_noise_sigma
        
        cur_plucker_embedding, _, _ = RT2Plucker(RTs, RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
        cur_plucker_embedding = cur_plucker_embedding.to(device)
        cur_plucker_embedding = cur_plucker_embedding[None, ...] # b 6 f h w
        cur_plucker_embedding = cur_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
        cur_plucker_embedding = cur_plucker_embedding[:, :num_frames, ...]
        cur_pose_features = pipeline.pose_encoder(cur_plucker_embedding)
        
        # bg_mode = ["Fixed", "Reverse", "Free"]
        if bg_mode == "Fixed":
            fix_RTs = np.repeat(RTs[0][None, ...], num_frames, axis=0) # [n_frame, 4, 3]
            fix_plucker_embedding, _, _ = RT2Plucker(fix_RTs, num_frames, (height, width), fx, fy, cx, cy) # 6, V, H, W
            fix_plucker_embedding = fix_plucker_embedding.to(device)
            fix_plucker_embedding = fix_plucker_embedding[None, ...] # b 6 f h w
            fix_plucker_embedding = fix_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
            fix_plucker_embedding = fix_plucker_embedding[:, :num_frames, ...]
            fix_pose_features = pipeline.pose_encoder(fix_plucker_embedding)
            
        elif bg_mode == "Reverse":
            bg_plucker_embedding, _, _ = RT2Plucker(RTs[::-1], RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
            bg_plucker_embedding = bg_plucker_embedding.to(device)
            bg_plucker_embedding = bg_plucker_embedding[None, ...] # b 6 f h w
            bg_plucker_embedding = bg_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
            bg_plucker_embedding = bg_plucker_embedding[:, :num_frames, ...]
            fix_pose_features = pipeline.pose_encoder(bg_plucker_embedding)
            
        else:
            fix_pose_features = None
            
        #### preparing mask
        
        mask = Image.fromarray(mask)
        mask.save(f'{cur_OUTPUT_PATH}/org_mask_big.png')
        mask = Image.open(f'{cur_OUTPUT_PATH}/org_mask_big.png')
        mask = mask.resize((W, H))
        mask = np.array(mask).astype(np.float32)
        mask = np.expand_dims(mask, axis=-1)
        
        # visulize mask
        if DEBUG:
            mask_sum_vis = mask[..., 0]
            mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
            mask_sum_vis = Image.fromarray(mask_sum_vis)
            
            mask_sum_vis.save(f'{cur_OUTPUT_PATH}/org_mask.png')
        
        try:
            warped_masks = Unprojected(mask, depth_down, RTs, H=H, W=W, K=K)
        
            warped_masks.insert(0, mask)
                
        except:
            # mask to bbox
            print(f'!!! Mask is too small to warp; mask to bbox') 
            mask = mask[:, :, 0]
            coords = cv2.findNonZero(mask)
            x, y, w, h = cv2.boundingRect(coords)
            # mask[y:y+h, x:x+w] = 1.0
            
            center_x, center_y = x + w // 2, y + h // 2
            center_z = depth_down[center_y, center_x]
            
            # RTs [n_frame, 3, 4] to [n_frame, 4, 4] , add [0, 0, 0, 1]
            RTs = np.concatenate([RTs, np.array([[[0, 0, 0, 1]]] * num_frames)], axis=1)
            
            # RTs: world to camera
            P0 = np.array([center_x, center_y, 1])
            Pc0 = np.linalg.inv(K) @ P0 * center_z
            pw = np.linalg.inv(RTs[0]) @ np.array([Pc0[0], Pc0[1], center_z, 1]) # [4]
            
            P = [np.array([center_x, center_y])]
            for i in range(1, num_frames):
                Pci = RTs[i] @ pw
                Pi = K @ Pci[:3] / Pci[2]
                P.append(Pi[:2])
            
            warped_masks = [mask]
            for i in range(1, num_frames):
                shift_x = int(round(P[i][0] - P[0][0]))
                shift_y = int(round(P[i][1] - P[0][1]))

                cur_mask = roll_with_ignore_multidim(mask, [shift_y, shift_x])
                warped_masks.append(cur_mask)
                
                
            warped_masks = [v[..., None] for v in warped_masks]
                
        warped_masks = np.stack(warped_masks, axis=0) # [f, h, w]
        warped_masks = np.repeat(warped_masks, 3, axis=-1) # [f, h, w, 3]
        
        mask_sum = np.sum(warped_masks, axis=0, keepdims=True)  # [1, H, W, 3]
        mask_sum[mask_sum > 1.0] = 1.0
        mask_sum = mask_sum[0,:,:, 0]
        
        if DEBUG:
            ## visulize warp mask    
            warp_masks_vis = torch.tensor(warped_masks)
            warp_masks_vis = (warp_masks_vis * 255.0).to(torch.uint8)
            torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warped_masks.mp4', warp_masks_vis, fps=10, video_codec='h264', options={'crf': '10'})
            
            # visulize mask
            mask_sum_vis = mask_sum
            mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
            mask_sum_vis = Image.fromarray(mask_sum_vis)
            
            mask_sum_vis.save(f'{cur_OUTPUT_PATH}/merged_mask.png')
            
        if scale_wise_masks:
            min_area = H * W * area_ratio # cal in downscale
            non_zero_len = mask_sum.sum() 
            
            print(f'non_zero_len: {non_zero_len}, min_area: {min_area}')
            
            if non_zero_len > min_area:
                kernel_sizes = [1, 1, 1, 3]
            elif non_zero_len > min_area * 0.5:
                kernel_sizes = [3, 1, 1, 5]
            else:
                kernel_sizes = [5, 3, 3, 7]
        else:
            kernel_sizes = [1, 1, 1, 1]
            
        mask = torch.from_numpy(mask_sum) # [h, w]
        mask = mask[None, None, ...] # [1, 1, h, w]
        mask = F.interpolate(mask, (height, width), mode='bilinear', align_corners=False) # [1, 1, H, W]
        # mask = mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
        mask = mask.to(pipeline.dtype).to(device)
        
        ##### Mask End ######
        
        ### Got blending pose features Start ###
    
        pose_features = []
        for i in range(0, len(cur_pose_features)):
            kernel_size = kernel_sizes[i]
            h, w = cur_pose_features[i].shape[-2:]
            
            if fix_pose_features is None:
                pose_features.append(torch.zeros_like(cur_pose_features[i]))
            else:
                pose_features.append(fix_pose_features[i])
                
            cur_mask = F.interpolate(mask, (h, w), mode='bilinear', align_corners=False)
            cur_mask = dilate_mask_pytorch(cur_mask, kernel_size=kernel_size) # [1, 1, H, W]
            cur_mask = cur_mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
            
            if DEBUG:
                # visulize mask
                mask_vis = cur_mask[0, 0].cpu().numpy() * 255.0
                mask_vis = Image.fromarray(mask_vis.astype(np.uint8))
                mask_vis.save(f'{cur_OUTPUT_PATH}/mask_k{kernel_size}_scale{i}.png')
                
            cur_mask = cur_mask[None, ...] # [1, 1, f, H, W]
            pose_features[-1] = cur_pose_features[i] * cur_mask + pose_features[-1] * (1 - cur_mask)

        ### Got blending pose features End ###
        
        ##### Warp Noise Start ######
        
        if shared_wapring_latents:
            noise = latents_org[0, 0].data.cpu().numpy().copy() #[14, 4, 40, 72]
            noise = np.transpose(noise, (1, 2, 0)) # [40, 72, 4]

            try:
                warp_noise = Unprojected(noise, depth_down, RTs, H=H, W=W, K=K)
                warp_noise.insert(0, noise)
            except:
                print(f'!!! Noise is too small to warp; mask to bbox')
                
                warp_noise = [noise]
                for i in range(1, num_frames):
                    shift_x = int(round(P[i][0] - P[0][0]))
                    shift_y = int(round(P[i][1] - P[0][1]))
                    
                    cur_noise= roll_with_ignore_multidim(noise, [shift_y, shift_x])
                    warp_noise.append(cur_noise)
                    
                warp_noise = np.stack(warp_noise, axis=0) # [f, h, w, 4]
        
            if DEBUG:
                ## visulize warp noise
                warp_noise_vis = torch.tensor(warp_noise)[..., :3] * torch.tensor(warped_masks)
                warp_noise_vis = (warp_noise_vis - warp_noise_vis.min()) / (warp_noise_vis.max() - warp_noise_vis.min())
                warp_noise_vis = (warp_noise_vis * 255.0).to(torch.uint8)
        
                torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warp_noise.mp4', warp_noise_vis, fps=10, video_codec='h264', options={'crf': '10'})
        
        
            warp_latents = torch.tensor(warp_noise).permute(0, 3, 1, 2).to(latents_org.device).to(latents_org.dtype) # [frame, 4, H, W]
            warp_latents = warp_latents.unsqueeze(0) # [1, frame, 4, H, W]
            
            warped_masks = torch.tensor(warped_masks).permute(0, 3, 1, 2).unsqueeze(0) # [1, frame, 3, H, W]
            mask_extend = torch.concat([warped_masks, warped_masks[:,:,0:1]], dim=2) # [1, frame, 4, H, W]
            mask_extend = mask_extend.to(latents_org.device).to(latents_org.dtype)
            
            warp_latents = warp_latents * mask_extend + latents_org * (1 - mask_extend)
            warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
            random_noise = latents_org.clone().permute(0, 2, 1, 3, 4)
                
            filter_shape = warp_latents.shape

            freq_filter = get_freq_filter(
                filter_shape, 
                device = device, 
                filter_type='butterworth',
                n=4,
                d_s=ds,
                d_t=dt
            )
            
            warp_latents = freq_mix_3d(warp_latents, random_noise, freq_filter)
            warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
            
        else:
            warp_latents = latents_org.clone()
            
        generator.manual_seed(42)

        with torch.no_grad():
            result = pipeline(
                image=condition_image,
                pose_embedding=cur_plucker_embedding,
                height=height,
                width=width,
                num_frames=num_frames,
                num_inference_steps=num_inference_steps,
                min_guidance_scale=min_guidance_scale,
                max_guidance_scale=max_guidance_scale,
                do_image_process=True,
                generator=generator,
                output_type='pt',
                pose_features= pose_features,
                latents = warp_latents
            ).frames[0].cpu() #[f, c, h, w]
            
        
        result = rearrange(result, 'f c h w -> f h w c')
        result = (result * 255.0).to(torch.uint8)

        video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
        torchvision.io.write_video(video_path, result, fps=10, video_codec='h264', options={'crf': '8'})
        
        return video_path
    
    return run_objctrl_2_5d