Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,354 Bytes
38e3f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import os
from scipy.interpolate import griddata as interp_grid
from tqdm import tqdm
import numpy as np
import cv2
from PIL import Image
import torch
from packaging import version as pver
import torch.nn.functional as F
def trajectory_to_camera_poses_v1(traj, intrinsics, sample_n_frames, zc = 1.0):
if not isinstance(zc, list):
assert isinstance(zc, float) or isinstance(zc, int), 'zc should be a float or int or a list of float or int'
zc = [zc] * traj.shape[0]
zc = np.array(zc, dtype=traj.dtype)
xc = (traj[:, 0] - intrinsics[0, 2]) * zc / intrinsics[0, 0]
yc = (traj[:, 1] - intrinsics[0, 3]) * zc / intrinsics[0, 1]
first_frame_w2c = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
], dtype=np.float32)
xw = xc[0]
yw = yc[0]
zw = zc[0]
# zw = 0
# print(f'zw: {zw}')
Tx = xc - xw
Ty = yc - yw
Tz = zc - zw
traj_w2c = [first_frame_w2c]
for i in range(1, sample_n_frames):
w2c_mat = np.array([
[1, 0, 0, Tx[i]],
[0, 1, 0, Ty[i]],
[0, 0, 1, Tz[i]],
[0, 0, 0, 1]
], dtype=first_frame_w2c.dtype)
traj_w2c.append(w2c_mat)
traj_w2c = np.stack(traj_w2c, axis=0)
return traj_w2c # [n_frame, 4, 4]
def Unprojected(image_curr: np.array,
depth_curr: np.array,
RTs: np.array,
H: int = 320, W: int = 576,
K: np.array = None,
dtype: np.dtype = np.float32):
'''
image_curr: [H, W, c], float, 0-1
depth_curr: [H, W], float32, in meters
RTs: [num_frames, 3, 4], the camera poses, w2c
'''
x, y = np.meshgrid(np.arange(W, dtype=dtype), np.arange(H, dtype=dtype), indexing='xy') # pixels
# ceter_depth = np.mean(depth_curr[cam.H//2-10:cam.H//2+10, cam.W//2-10:cam.W//2+10])
RTs = RTs.astype(dtype)
depth_curr = depth_curr.astype(dtype)
image_curr = image_curr.reshape(H*W, -1).astype(dtype) # [0, 1]
R0, T0 = RTs[0, :, :3], RTs[0, :, 3:4]
# new_pts_coord_world2 = image_curr
pts_coord_cam = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))
new_pts_coord_world2 = (np.linalg.inv(R0).dot(pts_coord_cam) - np.linalg.inv(R0).dot(T0)) ## new_pts_coord_world2
new_pts_colors2 = image_curr ## new_pts_colors2
pts_coord_world, pts_colors = new_pts_coord_world2.copy(), new_pts_colors2.copy()
images = []
for i in tqdm(range(1, RTs.shape[0])):
R, T = RTs[i, :, :3], RTs[i, :, 3:4]
### Transform world to pixel
pts_coord_cam2 = R.dot(pts_coord_world) + T ### Same with c2w*world_coord (in homogeneous space)
pixel_coord_cam2 = np.matmul(K, pts_coord_cam2) #.reshape(3,H,W).transpose(1,2,0).astype(np.float32)
valid_idx = np.where(np.logical_and.reduce((pixel_coord_cam2[2]>0,
pixel_coord_cam2[0]/pixel_coord_cam2[2]>=0,
pixel_coord_cam2[0]/pixel_coord_cam2[2]<=W-1,
pixel_coord_cam2[1]/pixel_coord_cam2[2]>=0,
pixel_coord_cam2[1]/pixel_coord_cam2[2]<=H-1)))[0]
pixel_coord_cam2 = pixel_coord_cam2[:2, valid_idx]/pixel_coord_cam2[-1:, valid_idx]
# round_coord_cam2 = np.round(pixel_coord_cam2).astype(np.int32)
x, y = np.meshgrid(np.arange(W, dtype=dtype), np.arange(H, dtype=dtype), indexing='xy')
grid = np.stack((x,y), axis=-1).reshape(-1,2)
image2 = interp_grid(pixel_coord_cam2.transpose(1,0), pts_colors[valid_idx], grid, method='linear', fill_value=0).reshape(H,W,-1)
images.append(image2)
print(f'Total {len(images)} images, each image shape: {images[0].shape}')
return images
class Camera(object):
def __init__(self, entry):
fx, fy, cx, cy = entry[1:5]
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
w2c_mat = np.array(entry[7:]).reshape(3, 4)
w2c_mat_4x4 = np.eye(4)
w2c_mat_4x4[:3, :] = w2c_mat
self.w2c_mat = w2c_mat_4x4
self.c2w_mat = np.linalg.inv(w2c_mat_4x4)
def get_relative_pose(cam_params, zero_t_first_frame):
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
source_cam_c2w = abs_c2ws[0]
if zero_t_first_frame:
cam_to_origin = 0
else:
cam_to_origin = np.linalg.norm(source_cam_c2w[:3, 3])
target_cam_c2w = np.array([
[1, 0, 0, 0],
[0, 1, 0, -cam_to_origin],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
abs2rel = target_cam_c2w @ abs_w2cs[0]
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
ret_poses = np.array(ret_poses, dtype=np.float32)
return ret_poses
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def ray_condition(K, c2w, H, W, device, flip_flag=None):
# c2w: B, V, 4, 4
# K: B, V, 4
B, V = K.shape[:2]
j, i = custom_meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
)
i = i.reshape([1, 1, H * W]).expand([B, V, H * W]) + 0.5 # [B, V, HxW]
j = j.reshape([1, 1, H * W]).expand([B, V, H * W]) + 0.5 # [B, V, HxW]
n_flip = torch.sum(flip_flag).item() if flip_flag is not None else 0
if n_flip > 0:
j_flip, i_flip = custom_meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(W - 1, 0, W, device=device, dtype=c2w.dtype)
)
i_flip = i_flip.reshape([1, 1, H * W]).expand(B, 1, H * W) + 0.5
j_flip = j_flip.reshape([1, 1, H * W]).expand(B, 1, H * W) + 0.5
i[:, flip_flag, ...] = i_flip
j[:, flip_flag, ...] = j_flip
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
zs = torch.ones_like(i) # [B, V, HxW]
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
zs = zs.expand_as(ys)
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, HW, 3
rays_o = c2w[..., :3, 3] # B, V, 3
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, HW, 3
# c2w @ dirctions
rays_dxo = torch.cross(rays_o, rays_d) # B, V, HW, 3
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
# plucker = plucker.permute(0, 1, 4, 2, 3)
return plucker, rays_o, rays_d
def RT2Plucker(RT, num_frames, sample_size, fx, fy, cx, cy):
'''
RT: [num_frames, 3, 4]
'''
cam_params = []
for i in range(num_frames):
cam_params.append(Camera([0, fx, fy, cx, cy, 0, 0, RT[i].reshape(-1)]))
print(cam_params[0].c2w_mat.shape)
intrinsics = np.asarray([[cam_param.fx * sample_size[1],
cam_param.fy * sample_size[0],
cam_param.cx * sample_size[1],
cam_param.cy * sample_size[0]]
for cam_param in cam_params], dtype=np.float32)
intrinsics = torch.as_tensor(intrinsics)[None]
print(intrinsics.shape)
relative_pose = True
zero_t_first_frame = True
use_flip = False
if relative_pose:
c2w_poses = get_relative_pose(cam_params, zero_t_first_frame)
else:
c2w_poses = np.array([cam_param.c2w_mat for cam_param in cam_params], dtype=np.float32)
c2w = torch.as_tensor(c2w_poses)[None] # [1, n_frame, 4, 4]
flip_flag = torch.zeros(num_frames, dtype=torch.bool, device=c2w.device)
plucker_embedding, rays_o, rays_d = ray_condition(intrinsics, c2w, sample_size[0], sample_size[1], device='cpu',
flip_flag=flip_flag)
plucker_embedding = plucker_embedding[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W
plucker_embedding = plucker_embedding.permute(1, 0, 2, 3).contiguous() # 6, V, H, W
return plucker_embedding, rays_o, rays_d
def visualized_trajectories(images, trajectories, save_path, save_each_frame=False):
'''
images: [n_frame, H, W, 3], numpy, 0-255
trajectories: [[n_frame, 2]], list[numpy], x, y
save_path: str, end with .gif
'''
pil_image = []
H, W = images.shape[1], images.shape[2]
n_frame = images.shape[0]
for i in range(n_frame):
image = images[i].astype(np.uint8)
image = cv2.UMat(image)
# print(f'image: {image.shape} {image.dtype} {type(image)}')
#
for traj in trajectories:
line_data = traj[:i+1]
if len(line_data) == 1:
y = int(round(line_data[0][1]))
x = int(round(line_data[0][0]))
if y >= H:
y = H - 1
if line_data[0][0] >= W:
x = W - 1
# image[y, x] = [255, 0, 0]
cv2.circle(image, (x, y), 1, (0, 255, 0), 8)
else:
for j in range(1, len(line_data)):
x0, y0 = int(round(line_data[j-1][0])), int(round(line_data[j-1][1]))
x1, y1 = int(round(line_data[j][0])), int(round(line_data[j][1]))
if y0 >= H:
y0 = H - 1
if y1 >= H:
y1 = H - 1
if x0 >= W:
x0 = W - 1
if x1 >= W:
x1 = W - 1
if x0 != x1 or y0 != y1:
if j == len(line_data) - 1:
line_length = np.sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2)
arrow_head_length = 10
tip_length = arrow_head_length / line_length
cv2.arrowedLine(image, (x0, y0), (x1, y1), (255, 0, 0), 6, tipLength=tip_length)
else:
cv2.line(image, (x0, y0), (x1, y1), (255, 0, 0), 6)
cv2.circle(image, (x, y), 1, (0, 255, 0), 8)
# cv2.circle(image, (x1, y1), 1, (0, 0, 255), 5)
image = cv2.UMat.get(image)
pil_image.append(Image.fromarray(image))
pil_image[0].save(save_path, save_all=True, append_images=pil_image[1:], loop=0, duration=100)
# save each frame
if save_each_frame:
img_save_root = save_path.replace('.gif', '')
os.makedirs(img_save_root, exist_ok=True)
for i, img in enumerate(pil_image):
img.save(os.path.join(img_save_root, f'{i:05d}.png'))
def roll_with_ignore_multidim(arr, shifts):
result = np.copy(arr)
for axis, shift in enumerate(shifts):
result = roll_with_ignore(result, shift, axis)
return result
def roll_with_ignore(arr, shift, axis):
result = np.zeros_like(arr)
if shift > 0:
result[tuple(slice(shift, None) if i == axis else slice(None) for i in range(arr.ndim))] = \
arr[tuple(slice(None, -shift) if i == axis else slice(None) for i in range(arr.ndim))]
elif shift < 0:
result[tuple(slice(None, shift) if i == axis else slice(None) for i in range(arr.ndim))] = \
arr[tuple(slice(-shift, None) if i == axis else slice(None) for i in range(arr.ndim))]
else:
result = arr
return result
def dilate_mask_pytorch(mask, kernel_size=2):
'''
mask: torch.Tensor, shape [b, c, h, w]
kernel_size: int
'''
# Define a smaller kernel for the dilation
kernel = torch.ones((1, 1, kernel_size, kernel_size), dtype=mask.dtype, device=mask.device)
# Perform the dilation operation
dilated_mask = F.conv2d(mask, kernel, padding=kernel_size//2)
# Ensure the output is still a binary mask (0 and 1)
dilated_mask = (dilated_mask > 0).to(mask.dtype).to(mask.device)
return dilated_mask
def smooth_mask(mask, kernel_size=3):
'''
mask: torch.Tensor, shape [b, c, h, w]
kernel_size: int
'''
# Define a Gaussian kernel for smoothing
kernel = torch.ones((1, 1, kernel_size, kernel_size), dtype=mask.dtype, device=mask.device) / (kernel_size * kernel_size)
# Perform the smoothing operation
smoothed_mask = F.conv2d(mask, kernel, padding=kernel_size//2)
# Ensure the output is still a binary mask (0 and 1)
smoothed_mask = (smoothed_mask > 0.5).to(mask.dtype).to(mask.device)
return smoothed_mask
|