File size: 8,743 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import gradio as gr
from PIL import Image
import numpy as np

from copy import deepcopy
import cv2
import torch

from ZoeDepth.zoedepth.utils.misc import colorize

from objctrl_2_5d.utils.vis_camera import vis_camera_rescale
from objctrl_2_5d.utils.objmask_util import trajectory_to_camera_poses_v1
from objctrl_2_5d.utils.customized_cam import rotation, clockwise, pan_and_zoom


zc_threshold = 0.2
depth_scale_ = 5.2
center_margin = 10

height, width = 320, 576
num_frames = 14

intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]])
intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4]
fx = intrinsics[0, 0] / width
fy = intrinsics[0, 1] / height
cx = intrinsics[0, 2] / width
cy = intrinsics[0, 3] / height

def process_image(raw_image):
    
    
    image, points = raw_image['image'], raw_image['points']
    
    print(points)
    
    try:
        assert(len(points)) == 1, "Please select only one point"
        [x1, y1, _, x2, y2, _] = points[0]
        
        image = image.crop((x1, y1, x2, y2))
        image = image.resize((width, height))
    except:
        image = image.resize((width, height))
    
    return image, gr.update(value={'image': image})

# -------------- general UI functionality --------------

def get_subject_points(canvas):
    return canvas["image"], canvas["points"]

def run_segment(segmentor):
    def segment(canvas, image, logits):
        if logits is not None:
            logits *=  32.0
        _, points = get_subject_points(canvas)
        image = np.array(image)

        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
            segmentor.set_image(image)
            input_points = []
            input_boxes = []
            for p in points:
                [x1, y1, _, x2, y2, _] = p
                if x2==0 and y2==0:
                    input_points.append([x1, y1])
                else:
                    input_boxes.append([x1, y1, x2, y2])
            if len(input_points) == 0:
                input_points = None
                input_labels = None
            else:
                input_points = np.array(input_points)
                input_labels = np.ones(len(input_points))
            if len(input_boxes) == 0:
                input_boxes = None
            else:
                input_boxes = np.array(input_boxes)
            masks, _, logits = segmentor.predict(
                point_coords=input_points,
                point_labels=input_labels,
                box=input_boxes,
                multimask_output=False,
                return_logits=True,
                mask_input=logits,
            )
            mask = masks > 0
            masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
            masked_img = Image.fromarray(masked_img)
            
        return mask[0], masked_img, masked_img, logits / 32.0

    return segment

def mask_image(image,
               mask,
               color=[255,0,0],
               alpha=0.5):
    """ Overlay mask on image for visualization purpose.
    Args:
        image (H, W, 3) or (H, W): input image
        mask (H, W): mask to be overlaid
        color: the color of overlaid mask
        alpha: the transparency of the mask
    """
    out = deepcopy(image)
    img = deepcopy(image)
    img[mask == 1] = color
    out = cv2.addWeighted(img, alpha, out, 1-alpha, 0, out)
    return out

def get_points(img,
               sel_pix,
               evt: gr.SelectData):
    
    # collect the selected point
    img = np.array(img)
    img = deepcopy(img)
    sel_pix.append(evt.index)
    # only draw the last two points
    # if len(sel_pix) > 2:
    #     sel_pix = sel_pix[-2:]
    points = []
    for idx, point in enumerate(sel_pix):
        if idx % 2 == 0:
            # draw a red circle at the handle point
            cv2.circle(img, tuple(point), 10, (255, 0, 0), -1)
        else:
            # draw a blue circle at the handle point
            cv2.circle(img, tuple(point), 10, (0, 0, 255), -1)
        points.append(tuple(point))
        # draw an arrow from handle point to target point
        # if len(points) == idx + 1:
        if idx > 0:
            cv2.arrowedLine(img, points[idx-1], points[idx], (255, 255, 255), 4, tipLength=0.5)
            # points = []
            
    return img if isinstance(img, np.ndarray) else np.array(img), sel_pix

# clear all handle/target points
def undo_points(original_image):
    return original_image, []

def run_depth(d_model_NK):
    def get_depth(image, points):
        
        depth = d_model_NK.infer_pil(image)    
        colored_depth = colorize(depth, cmap='gray_r') # [h, w, 4] 0-255
        
        depth_img = deepcopy(colored_depth[:, :, :3])
        if len(points) > 0:
            for idx, point in enumerate(points):
                if idx % 2 == 0:
                    cv2.circle(depth_img, tuple(point), 10, (255, 0, 0), -1)
                else:
                    cv2.circle(depth_img, tuple(point), 10, (0, 0, 255), -1)
                if idx > 0:
                    cv2.arrowedLine(depth_img, points[idx-1], points[idx], (255, 255, 255), 4, tipLength=0.5)
        
        return depth, depth_img, colored_depth[:, :, :3]
    
    return get_depth


def interpolate_points(points, num_points):
    x = points[:, 0]
    y = points[:, 1]
    
    # Interpolating the points
    t = np.linspace(0, 1, len(points))
    t_new = np.linspace(0, 1, num_points)
    
    x_new = np.interp(t_new, t, x)
    y_new = np.interp(t_new, t, y)
    
    return np.vstack((x_new, y_new)).T # []

def traj2cam(traj, depth, rescale):
    
    traj = np.array(traj)
    trajectory = interpolate_points(traj, num_frames)
    
    center_h_margin, center_w_margin = center_margin, center_margin
    depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
    
    depth_rescale = round(depth_scale_ * rescale / depth_center, 2)
    r_depth = depth * depth_rescale
    
    zc = []
    for i in range(num_frames):
        zc.append(r_depth[int(trajectory[i][1]), int(trajectory[i][0])])
    print(f'zc: {zc}')
    
    ## norm zc
    zc_norm = np.array(zc)
    zc_grad = zc_norm[1:] - zc_norm[:-1]
    zc_grad = np.abs(zc_grad)
    zc_grad = zc_grad[1:] - zc_grad[:-1]
    zc_grad_std = np.std(zc_grad)

    if zc_grad_std > zc_threshold:
        zc = [zc[0]] * num_frames
        
    print(f'zc_grad_std: {zc_grad_std}, zc_threshold: {zc_threshold}')
    print(f'zc: {zc}')

    traj_w2c = trajectory_to_camera_poses_v1(trajectory, intrinsics, num_frames, zc=zc) # numpy: [n_frame, 4, 4]
    RTs = traj_w2c[:, :3]
    fig = vis_camera_rescale(RTs)
    
    return RTs, fig

def get_rotate_cam(angle, depth):
    # mean_depth = np.mean(depth * mask)
    center_h_margin, center_w_margin = center_margin, center_margin
    depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
    print(f'rotate depth_center: {depth_center}')
    
    RTs = rotation(num_frames, angle, depth_center, depth_center)
    fig = vis_camera_rescale(RTs)
    
    return RTs, fig

def get_clockwise_cam(angle, depth, mask):
    mask = mask.astype(np.float32) # [0, 1]
    mean_depth = np.mean(depth * mask)
    # center_h_margin, center_w_margin = center_margin, center_margin
    # depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
    
    RTs = clockwise(angle, num_frames)
    
    RTs[:, -1, -1] = mean_depth
    fig = vis_camera_rescale(RTs)
    
    return RTs, fig

def get_translate_cam(Tx, Ty, Tz, depth, mask, speed):
    mask = mask.astype(np.float32) # [0, 1]
    
    mean_depth = np.mean(depth * mask)
    
    T = np.array([Tx, Ty, Tz])
    T = T.reshape(3, 1)
    T = T[None, ...].repeat(num_frames, axis=0)
    
    RTs = pan_and_zoom(T, speed, n=num_frames)
    RTs[:, -1, -1] += mean_depth
    fig = vis_camera_rescale(RTs)
    
    return RTs, fig

def get_camera_pose(camera_mode):
    def trigger_camera_pose(camera_option, selected_points, depth, mask, rescale, angle, Tx, Ty, Tz, speed):
        if camera_option == camera_mode[0]: # traj2cam
            return traj2cam(selected_points, depth, rescale)
        elif camera_option == camera_mode[1]: # rotate
            return get_rotate_cam(angle, depth)
        elif camera_option == camera_mode[2]: # clockwise
            return get_clockwise_cam(angle, depth, mask)
        elif camera_option == camera_mode[3]: # translate
            return get_translate_cam(Tx, Ty, Tz, depth, mask, speed)
        
    return trigger_camera_pose