File size: 16,337 Bytes
2a2a6d8
37c595d
0510aa0
 
37c595d
 
 
 
979cf8b
 
0510aa0
979cf8b
37c595d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24e97b
 
37c595d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979cf8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37c595d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979cf8b
 
37c595d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import spaces
import os
import gradio as gr

import torch
from gradio_image_prompter import ImagePrompter
from sam2.sam2_image_predictor import SAM2ImagePredictor
from omegaconf import OmegaConf
from PIL import Image
import numpy as np

from objctrl_2_5d.utils.ui_utils import process_image, get_camera_pose, get_subject_points, run_depth, get_points, undo_points, mask_image


from cameractrl.inference import get_pipeline
from objctrl_2_5d.objctrl_2_5d import run
from objctrl_2_5d.utils.examples import examples, sync_points


### Title and Description ###
#### Description ####
title = r"""<h1 align="center">ObjCtrl-2.5D: Training-free Object Control with Camera Poses</h1>"""
# subtitle = r"""<h2 align="center">Deployed on SVD Generation</h2>"""
important_link = r"""
<div align='center'>
 <a href='https://wzhouxiff.github.io/projects/MotionCtrl/assets/paper/MotionCtrl.pdf'>[Paper]</a>
&ensp; <a href='https://wzhouxiff.github.io/projects/MotionCtrl/'>[Project Page]</a>
&ensp; <a href='https://github.com/TencentARC/MotionCtrl'>[Code]</a>
</div>
"""

authors = r"""
<div align='center'>
 <a href='https://wzhouxiff.github.io/'>Zhouxia Wang</a>
&ensp; <a href='https://nirvanalan.github.io/'>Yushi Lan</a>
&ensp; <a href='https://shangchenzhou.com/'>Shanchen Zhou</a>
&ensp; <a href='https://www.mmlab-ntu.com/person/ccloy/index.html'>Chen Change Loy</a>
</div>
"""

affiliation = r"""
<div align='center'>
 <a href='https://www.mmlab-ntu.com/'>S-Lab, NTU Singapore</a>
</div>
"""

description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'><b>ObjCtrl-2.5D: Training-free Object Control with Camera Poses</b></a>.<br>
πŸ”₯ ObjCtrl2.5D enables object motion control in a I2V generated video via transforming 2D trajectories to 3D using depth, subsequently converting them into camera poses, 
thereby leveraging the exisitng camera motion control module for object motion control without requiring additional training.<br>
"""

article = r"""
If ObjCtrl2.5D is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'>Github Repo</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC%2FMotionCtrl
)](https://github.com/TencentARC/MotionCtrl)

---

πŸ“ **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{wang2024motionctrl,
  title={Motionctrl: A unified and flexible motion controller for video generation},
  author={Wang, Zhouxia and Yuan, Ziyang and Wang, Xintao and Li, Yaowei and Chen, Tianshui and Xia, Menghan and Luo, Ping and Shan, Ying},
  booktitle={ACM SIGGRAPH 2024 Conference Papers},
  pages={1--11},
  year={2024}
}
```

πŸ“§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>zhouzi1212@gmail.com</b>.

"""

# -------------- initialization --------------

CAMERA_MODE = ["Traj2Cam", "Rotate", "Clockwise", "Translate"]

# select the device for computation
if torch.cuda.is_available():
    device = torch.device("cuda")
elif torch.backends.mps.is_available():
    device = torch.device("mps")
else:
    device = torch.device("cpu")
    device = torch.device("cuda")
    print(f"Force device to {device} due to ZeroGPU")
print(f"using device: {device}")

# segmentation model
segmentor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny", cache_dir="ckpt", device=device)

# depth model
d_model_NK = torch.hub.load('./ZoeDepth', 'ZoeD_NK', source='local', pretrained=True).to(device)

# cameractrl model
config = "configs/svd_320_576_cameractrl.yaml"
model_id = "stabilityai/stable-video-diffusion-img2vid"
ckpt = "checkpoints/CameraCtrl_svd.ckpt"
if not os.path.exists(ckpt):
    os.makedirs("checkpoints", exist_ok=True)
    os.system("wget -c https://huggingface.co/hehao13/CameraCtrl_SVD_ckpts/resolve/main/CameraCtrl_svd.ckpt?download=true")
    os.system("mv CameraCtrl_svd.ckpt?download=true checkpoints/CameraCtrl_svd.ckpt")
model_config = OmegaConf.load(config)


pipeline = get_pipeline(model_id, "unet", model_config['down_block_types'], model_config['up_block_types'],
                        model_config['pose_encoder_kwargs'], model_config['attention_processor_kwargs'],
                        ckpt, True, device)

# segmentor = None
# d_model_NK = None
# pipeline = None

### run the demo ##
@spaces.GPU(duration=50)
# def run_segment(segmentor):
def segment(canvas, image, logits):
    if logits is not None:
        logits *=  32.0
    _, points = get_subject_points(canvas)
    image = np.array(image)

    with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
        segmentor.set_image(image)
        input_points = []
        input_boxes = []
        for p in points:
            [x1, y1, _, x2, y2, _] = p
            if x2==0 and y2==0:
                input_points.append([x1, y1])
            else:
                input_boxes.append([x1, y1, x2, y2])
        if len(input_points) == 0:
            input_points = None
            input_labels = None
        else:
            input_points = np.array(input_points)
            input_labels = np.ones(len(input_points))
        if len(input_boxes) == 0:
            input_boxes = None
        else:
            input_boxes = np.array(input_boxes)
        masks, _, logits = segmentor.predict(
            point_coords=input_points,
            point_labels=input_labels,
            box=input_boxes,
            multimask_output=False,
            return_logits=True,
            mask_input=logits,
        )
        mask = masks > 0
        masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
        masked_img = Image.fromarray(masked_img)
        
    return mask[0], masked_img, masked_img, logits / 32.0

    # return segment


# -------------- UI definition --------------
with gr.Blocks() as demo:
    # layout definition
    gr.Markdown(title)
    gr.Markdown(authors)
    gr.Markdown(affiliation)
    gr.Markdown(important_link)
    gr.Markdown(description)
    
    
    # with gr.Row():
    #     gr.Markdown("""# <center>Repositioning the Subject within Image </center>""")
    mask = gr.State(value=None) # store mask
    removal_mask = gr.State(value=None) # store removal mask
    selected_points = gr.State([]) # store points
    selected_points_text = gr.Textbox(label="Selected Points", visible=False)
    
    original_image = gr.State(value=None) # store original input image
    masked_original_image = gr.State(value=None) # store masked input image
    mask_logits = gr.State(value=None) # store mask logits
    
    depth = gr.State(value=None) # store depth
    org_depth_image = gr.State(value=None) # store original depth image
    
    camera_pose = gr.State(value=None) # store camera pose
    
    with gr.Column():
        
        outlines = """
        <font size="5"><b>There are total 5 steps to complete the task.</b></font>
        - Step 1: Input an image and Crop it to a suitable size;
        - Step 2: Attain the subject mask;
        - Step 3: Get depth and Draw Trajectory;
        - Step 4: Get camera pose from trajectory or customize it;
        - Step 5: Generate the final video.
        """
        
        gr.Markdown(outlines)
        
        
        with gr.Row():
            with gr.Column():
                # Step 1: Input Image
                step1_dec = """
                    <font size="4"><b>Step 1: Input Image</b></font>
                    - Select the region using a <mark>bounding box</mark>, aiming for a ratio close to </mark>320:576</mark> (height:width).
                    - All provided images in `Examples` are in 320 x 576 resolution. Simply press `Process` to proceed.
                    """
                step1 = gr.Markdown(step1_dec)
                raw_input = ImagePrompter(type="pil", label="Raw Image", show_label=True, interactive=True)
                # left_up_point = gr.Textbox(value = "-1 -1", label="Left Up Point", interactive=True)
                process_button = gr.Button("Process")
                
            with gr.Column():
                # Step 2: Get Subject Mask
                step2_dec = """
                    <font size="4"><b>Step 2: Get Subject Mask</b></font>
                    - Use the <mark>bounding boxes</mark> or <mark>paints</mark> to select the subject.
                    - Press `Segment Subject` to get the mask. <mark>Can be refined iteratively by updating points<mark>.
                    """
                step2 = gr.Markdown(step2_dec)
                canvas = ImagePrompter(type="pil", label="Input Image", show_label=True, interactive=True) # for mask painting

                select_button = gr.Button("Segment Subject")
                
        with gr.Row():
            with gr.Column():
                mask_dec = """
                    <font size="4"><b>Mask Result</b></font>
                    - Just for visualization purpose. No need to interact.
                """
                mask_vis = gr.Markdown(mask_dec)
                mask_output = gr.Image(type="pil", label="Mask", show_label=True, interactive=False)
            with gr.Column():
                # Step 3: Get Depth and Draw Trajectory
                step3_dec = """
                    <font size="4"><b>Step 3: Get Depth and Draw Trajectory</b></font>
                    - Press `Get Depth` to get the depth image.
                    - Draw the trajectory by selecting points on the depth image. <mark>No more than 14 points</mark>.
                    - Press `Undo point` to remove all points.
                """
                step3 = gr.Markdown(step3_dec)
                depth_image = gr.Image(type="pil", label="Depth Image", show_label=True, interactive=False)
                with gr.Row():
                    depth_button = gr.Button("Get Depth")
                    undo_button = gr.Button("Undo point")
                    
        with gr.Row():
            with gr.Column():
                # Step 4: Trajectory to Camera Pose or Get Camera Pose
                step4_dec = """
                    <font size="4"><b>Step 4: Get camera pose from trajectory or customize it</b></font>
                    - Option 1: Transform the 2D trajectory to camera poses with depth. <mark>`Rescale` is used for depth alignment. Larger value can speed up the object motion.</mark>
                    - Option 2: Rotate the camera with a specific `Angle`.
                    - Option 3: Rotate the camera clockwise or counterclockwise with a specific `Angle`.
                    - Option 4: Translate the camera with `Tx` (<mark>Pan Left/Right</mark>), `Ty` (<mark>Pan Up/Down</mark>), `Tz` (<mark>Zoom In/Out</mark>) and `Speed`.
                """
                step4 = gr.Markdown(step4_dec)
                camera_pose_vis = gr.Plot(None, label='Camera Pose')
                with gr.Row():
                    with gr.Column():
                        speed = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=1.0, label="Speed", interactive=True)
                        rescale = gr.Slider(minimum=0.0, maximum=10, step=0.1, value=1.0, label="Rescale", interactive=True)
                        # traj2pose_button = gr.Button("Option1: Trajectory to Camera Pose")
                        
                        angle = gr.Slider(minimum=-360, maximum=360, step=1, value=60, label="Angle", interactive=True)
                        # rotation_button = gr.Button("Option2: Rotate")
                        # clockwise_button = gr.Button("Option3: Clockwise")
                    with gr.Column():
                        
                        Tx = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Tx", interactive=True)
                        Ty = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Ty", interactive=True)
                        Tz = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Tz", interactive=True)
                        # translation_button = gr.Button("Option4: Translate")
                with gr.Row():
                    camera_option = gr.Radio(choices = CAMERA_MODE, label='Camera Options', value=CAMERA_MODE[0], interactive=True)
                with gr.Row():
                    get_camera_pose_button = gr.Button("Get Camera Pose")
                        
            with gr.Column():
                # Step 5: Get the final generated video
                step5_dec = """
                    <font size="4"><b>Step 5: Get the final generated video</b></font>
                    - 3 modes for background: <mark>Fixed</mark>, <mark>Reverse</mark>, <mark>Free</mark>.
                    - Enable <mark>Scale-wise Masks</mark> for better object control.
                    - Option to enable <mark>Shared Warping Latents</mark> and set <mark>stop frequency</mark> for spatial (`ds`) and temporal (`dt`) dimensions. Larger stop frequency will lead to artifacts.
                """
                step5 = gr.Markdown(step5_dec)
                generated_video = gr.Video(None, label='Generated Video')
                
                with gr.Row():
                    seed = gr.Textbox(value = "42", label="Seed", interactive=True)
                    # num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Number of Inference Steps", interactive=True)
                    bg_mode = gr.Radio(choices = ["Fixed", "Reverse", "Free"], label="Background Mode", value="Fixed", interactive=True)
                # swl_mode = gr.Radio(choices = ["Enable SWL", "Disable SWL"], label="Shared Warping Latent", value="Disable SWL", interactive=True)
                scale_wise_masks = gr.Checkbox(label="Enable Scale-wise Masks", interactive=True, value=True)
                with gr.Row():
                    with gr.Column():
                        shared_wapring_latents = gr.Checkbox(label="Enable Shared Warping Latents", interactive=True)
                    with gr.Column():
                        ds = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.5, label="ds", interactive=True)
                        dt = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.5, label="dt", interactive=True)
                
                generated_button = gr.Button("Generate")

                

    # # event definition
    process_button.click(
        fn = process_image,
        inputs = [raw_input],
        outputs = [original_image, canvas]
    )
    
    select_button.click(
        # run_segment(segmentor),
        segment,
        [canvas, original_image, mask_logits],
        [mask, mask_output, masked_original_image, mask_logits]
    )
    
    depth_button.click(
        run_depth(d_model_NK),
        [original_image, selected_points],
        [depth, depth_image, org_depth_image]
    )
    
    depth_image.select(
        get_points,
        [depth_image, selected_points],
        [depth_image, selected_points],
    )
    undo_button.click(
        undo_points,
        [org_depth_image],
        [depth_image, selected_points]
    )
    
    get_camera_pose_button.click(
        get_camera_pose(CAMERA_MODE),
        [camera_option, selected_points, depth, mask, rescale, angle, Tx, Ty, Tz, speed],
        [camera_pose, camera_pose_vis]
    )
    
    generated_button.click(
        run(pipeline, device),
        [
         original_image,
         mask,
         depth,
         camera_pose,
         bg_mode,
         shared_wapring_latents,
         scale_wise_masks,
         rescale,
         seed,
         ds,
         dt,
        #  num_inference_steps
         ],
        [generated_video],
    )

    gr.Examples(
        examples=examples,
        inputs=[
            raw_input,
            rescale,
            speed,
            angle,
            Tx,
            Ty,
            Tz,
            camera_option,
            bg_mode,
            shared_wapring_latents,
            scale_wise_masks,
            ds,
            dt,
            seed,
            selected_points_text  # selected_points
        ],
        outputs=[generated_video], 
        examples_per_page=10
    )
    
    selected_points_text.change(
        sync_points,
        inputs=[selected_points_text],
        outputs=[selected_points]
    )


    gr.Markdown(article)


demo.queue().launch(share=True)