Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,337 Bytes
2a2a6d8 37c595d 0510aa0 37c595d 979cf8b 0510aa0 979cf8b 37c595d c24e97b 37c595d 979cf8b 37c595d 979cf8b 37c595d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import spaces
import os
import gradio as gr
import torch
from gradio_image_prompter import ImagePrompter
from sam2.sam2_image_predictor import SAM2ImagePredictor
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from objctrl_2_5d.utils.ui_utils import process_image, get_camera_pose, get_subject_points, run_depth, get_points, undo_points, mask_image
from cameractrl.inference import get_pipeline
from objctrl_2_5d.objctrl_2_5d import run
from objctrl_2_5d.utils.examples import examples, sync_points
### Title and Description ###
#### Description ####
title = r"""<h1 align="center">ObjCtrl-2.5D: Training-free Object Control with Camera Poses</h1>"""
# subtitle = r"""<h2 align="center">Deployed on SVD Generation</h2>"""
important_link = r"""
<div align='center'>
<a href='https://wzhouxiff.github.io/projects/MotionCtrl/assets/paper/MotionCtrl.pdf'>[Paper]</a>
  <a href='https://wzhouxiff.github.io/projects/MotionCtrl/'>[Project Page]</a>
  <a href='https://github.com/TencentARC/MotionCtrl'>[Code]</a>
</div>
"""
authors = r"""
<div align='center'>
<a href='https://wzhouxiff.github.io/'>Zhouxia Wang</a>
  <a href='https://nirvanalan.github.io/'>Yushi Lan</a>
  <a href='https://shangchenzhou.com/'>Shanchen Zhou</a>
  <a href='https://www.mmlab-ntu.com/person/ccloy/index.html'>Chen Change Loy</a>
</div>
"""
affiliation = r"""
<div align='center'>
<a href='https://www.mmlab-ntu.com/'>S-Lab, NTU Singapore</a>
</div>
"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'><b>ObjCtrl-2.5D: Training-free Object Control with Camera Poses</b></a>.<br>
π₯ ObjCtrl2.5D enables object motion control in a I2V generated video via transforming 2D trajectories to 3D using depth, subsequently converting them into camera poses,
thereby leveraging the exisitng camera motion control module for object motion control without requiring additional training.<br>
"""
article = r"""
If ObjCtrl2.5D is helpful, please help to β the <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC%2FMotionCtrl
)](https://github.com/TencentARC/MotionCtrl)
---
π **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{wang2024motionctrl,
title={Motionctrl: A unified and flexible motion controller for video generation},
author={Wang, Zhouxia and Yuan, Ziyang and Wang, Xintao and Li, Yaowei and Chen, Tianshui and Xia, Menghan and Luo, Ping and Shan, Ying},
booktitle={ACM SIGGRAPH 2024 Conference Papers},
pages={1--11},
year={2024}
}
```
π§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>zhouzi1212@gmail.com</b>.
"""
# -------------- initialization --------------
CAMERA_MODE = ["Traj2Cam", "Rotate", "Clockwise", "Translate"]
# select the device for computation
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
device = torch.device("cuda")
print(f"Force device to {device} due to ZeroGPU")
print(f"using device: {device}")
# segmentation model
segmentor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny", cache_dir="ckpt", device=device)
# depth model
d_model_NK = torch.hub.load('./ZoeDepth', 'ZoeD_NK', source='local', pretrained=True).to(device)
# cameractrl model
config = "configs/svd_320_576_cameractrl.yaml"
model_id = "stabilityai/stable-video-diffusion-img2vid"
ckpt = "checkpoints/CameraCtrl_svd.ckpt"
if not os.path.exists(ckpt):
os.makedirs("checkpoints", exist_ok=True)
os.system("wget -c https://huggingface.co/hehao13/CameraCtrl_SVD_ckpts/resolve/main/CameraCtrl_svd.ckpt?download=true")
os.system("mv CameraCtrl_svd.ckpt?download=true checkpoints/CameraCtrl_svd.ckpt")
model_config = OmegaConf.load(config)
pipeline = get_pipeline(model_id, "unet", model_config['down_block_types'], model_config['up_block_types'],
model_config['pose_encoder_kwargs'], model_config['attention_processor_kwargs'],
ckpt, True, device)
# segmentor = None
# d_model_NK = None
# pipeline = None
### run the demo ##
@spaces.GPU(duration=50)
# def run_segment(segmentor):
def segment(canvas, image, logits):
if logits is not None:
logits *= 32.0
_, points = get_subject_points(canvas)
image = np.array(image)
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
segmentor.set_image(image)
input_points = []
input_boxes = []
for p in points:
[x1, y1, _, x2, y2, _] = p
if x2==0 and y2==0:
input_points.append([x1, y1])
else:
input_boxes.append([x1, y1, x2, y2])
if len(input_points) == 0:
input_points = None
input_labels = None
else:
input_points = np.array(input_points)
input_labels = np.ones(len(input_points))
if len(input_boxes) == 0:
input_boxes = None
else:
input_boxes = np.array(input_boxes)
masks, _, logits = segmentor.predict(
point_coords=input_points,
point_labels=input_labels,
box=input_boxes,
multimask_output=False,
return_logits=True,
mask_input=logits,
)
mask = masks > 0
masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
masked_img = Image.fromarray(masked_img)
return mask[0], masked_img, masked_img, logits / 32.0
# return segment
# -------------- UI definition --------------
with gr.Blocks() as demo:
# layout definition
gr.Markdown(title)
gr.Markdown(authors)
gr.Markdown(affiliation)
gr.Markdown(important_link)
gr.Markdown(description)
# with gr.Row():
# gr.Markdown("""# <center>Repositioning the Subject within Image </center>""")
mask = gr.State(value=None) # store mask
removal_mask = gr.State(value=None) # store removal mask
selected_points = gr.State([]) # store points
selected_points_text = gr.Textbox(label="Selected Points", visible=False)
original_image = gr.State(value=None) # store original input image
masked_original_image = gr.State(value=None) # store masked input image
mask_logits = gr.State(value=None) # store mask logits
depth = gr.State(value=None) # store depth
org_depth_image = gr.State(value=None) # store original depth image
camera_pose = gr.State(value=None) # store camera pose
with gr.Column():
outlines = """
<font size="5"><b>There are total 5 steps to complete the task.</b></font>
- Step 1: Input an image and Crop it to a suitable size;
- Step 2: Attain the subject mask;
- Step 3: Get depth and Draw Trajectory;
- Step 4: Get camera pose from trajectory or customize it;
- Step 5: Generate the final video.
"""
gr.Markdown(outlines)
with gr.Row():
with gr.Column():
# Step 1: Input Image
step1_dec = """
<font size="4"><b>Step 1: Input Image</b></font>
- Select the region using a <mark>bounding box</mark>, aiming for a ratio close to </mark>320:576</mark> (height:width).
- All provided images in `Examples` are in 320 x 576 resolution. Simply press `Process` to proceed.
"""
step1 = gr.Markdown(step1_dec)
raw_input = ImagePrompter(type="pil", label="Raw Image", show_label=True, interactive=True)
# left_up_point = gr.Textbox(value = "-1 -1", label="Left Up Point", interactive=True)
process_button = gr.Button("Process")
with gr.Column():
# Step 2: Get Subject Mask
step2_dec = """
<font size="4"><b>Step 2: Get Subject Mask</b></font>
- Use the <mark>bounding boxes</mark> or <mark>paints</mark> to select the subject.
- Press `Segment Subject` to get the mask. <mark>Can be refined iteratively by updating points<mark>.
"""
step2 = gr.Markdown(step2_dec)
canvas = ImagePrompter(type="pil", label="Input Image", show_label=True, interactive=True) # for mask painting
select_button = gr.Button("Segment Subject")
with gr.Row():
with gr.Column():
mask_dec = """
<font size="4"><b>Mask Result</b></font>
- Just for visualization purpose. No need to interact.
"""
mask_vis = gr.Markdown(mask_dec)
mask_output = gr.Image(type="pil", label="Mask", show_label=True, interactive=False)
with gr.Column():
# Step 3: Get Depth and Draw Trajectory
step3_dec = """
<font size="4"><b>Step 3: Get Depth and Draw Trajectory</b></font>
- Press `Get Depth` to get the depth image.
- Draw the trajectory by selecting points on the depth image. <mark>No more than 14 points</mark>.
- Press `Undo point` to remove all points.
"""
step3 = gr.Markdown(step3_dec)
depth_image = gr.Image(type="pil", label="Depth Image", show_label=True, interactive=False)
with gr.Row():
depth_button = gr.Button("Get Depth")
undo_button = gr.Button("Undo point")
with gr.Row():
with gr.Column():
# Step 4: Trajectory to Camera Pose or Get Camera Pose
step4_dec = """
<font size="4"><b>Step 4: Get camera pose from trajectory or customize it</b></font>
- Option 1: Transform the 2D trajectory to camera poses with depth. <mark>`Rescale` is used for depth alignment. Larger value can speed up the object motion.</mark>
- Option 2: Rotate the camera with a specific `Angle`.
- Option 3: Rotate the camera clockwise or counterclockwise with a specific `Angle`.
- Option 4: Translate the camera with `Tx` (<mark>Pan Left/Right</mark>), `Ty` (<mark>Pan Up/Down</mark>), `Tz` (<mark>Zoom In/Out</mark>) and `Speed`.
"""
step4 = gr.Markdown(step4_dec)
camera_pose_vis = gr.Plot(None, label='Camera Pose')
with gr.Row():
with gr.Column():
speed = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=1.0, label="Speed", interactive=True)
rescale = gr.Slider(minimum=0.0, maximum=10, step=0.1, value=1.0, label="Rescale", interactive=True)
# traj2pose_button = gr.Button("Option1: Trajectory to Camera Pose")
angle = gr.Slider(minimum=-360, maximum=360, step=1, value=60, label="Angle", interactive=True)
# rotation_button = gr.Button("Option2: Rotate")
# clockwise_button = gr.Button("Option3: Clockwise")
with gr.Column():
Tx = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Tx", interactive=True)
Ty = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Ty", interactive=True)
Tz = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Tz", interactive=True)
# translation_button = gr.Button("Option4: Translate")
with gr.Row():
camera_option = gr.Radio(choices = CAMERA_MODE, label='Camera Options', value=CAMERA_MODE[0], interactive=True)
with gr.Row():
get_camera_pose_button = gr.Button("Get Camera Pose")
with gr.Column():
# Step 5: Get the final generated video
step5_dec = """
<font size="4"><b>Step 5: Get the final generated video</b></font>
- 3 modes for background: <mark>Fixed</mark>, <mark>Reverse</mark>, <mark>Free</mark>.
- Enable <mark>Scale-wise Masks</mark> for better object control.
- Option to enable <mark>Shared Warping Latents</mark> and set <mark>stop frequency</mark> for spatial (`ds`) and temporal (`dt`) dimensions. Larger stop frequency will lead to artifacts.
"""
step5 = gr.Markdown(step5_dec)
generated_video = gr.Video(None, label='Generated Video')
with gr.Row():
seed = gr.Textbox(value = "42", label="Seed", interactive=True)
# num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Number of Inference Steps", interactive=True)
bg_mode = gr.Radio(choices = ["Fixed", "Reverse", "Free"], label="Background Mode", value="Fixed", interactive=True)
# swl_mode = gr.Radio(choices = ["Enable SWL", "Disable SWL"], label="Shared Warping Latent", value="Disable SWL", interactive=True)
scale_wise_masks = gr.Checkbox(label="Enable Scale-wise Masks", interactive=True, value=True)
with gr.Row():
with gr.Column():
shared_wapring_latents = gr.Checkbox(label="Enable Shared Warping Latents", interactive=True)
with gr.Column():
ds = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.5, label="ds", interactive=True)
dt = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.5, label="dt", interactive=True)
generated_button = gr.Button("Generate")
# # event definition
process_button.click(
fn = process_image,
inputs = [raw_input],
outputs = [original_image, canvas]
)
select_button.click(
# run_segment(segmentor),
segment,
[canvas, original_image, mask_logits],
[mask, mask_output, masked_original_image, mask_logits]
)
depth_button.click(
run_depth(d_model_NK),
[original_image, selected_points],
[depth, depth_image, org_depth_image]
)
depth_image.select(
get_points,
[depth_image, selected_points],
[depth_image, selected_points],
)
undo_button.click(
undo_points,
[org_depth_image],
[depth_image, selected_points]
)
get_camera_pose_button.click(
get_camera_pose(CAMERA_MODE),
[camera_option, selected_points, depth, mask, rescale, angle, Tx, Ty, Tz, speed],
[camera_pose, camera_pose_vis]
)
generated_button.click(
run(pipeline, device),
[
original_image,
mask,
depth,
camera_pose,
bg_mode,
shared_wapring_latents,
scale_wise_masks,
rescale,
seed,
ds,
dt,
# num_inference_steps
],
[generated_video],
)
gr.Examples(
examples=examples,
inputs=[
raw_input,
rescale,
speed,
angle,
Tx,
Ty,
Tz,
camera_option,
bg_mode,
shared_wapring_latents,
scale_wise_masks,
ds,
dt,
seed,
selected_points_text # selected_points
],
outputs=[generated_video],
examples_per_page=10
)
selected_points_text.change(
sync_points,
inputs=[selected_points_text],
outputs=[selected_points]
)
gr.Markdown(article)
demo.queue().launch(share=True)
|