Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,346 Bytes
38e3f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import gradio as gr
from zoedepth.utils.misc import colorize
from PIL import Image
import tempfile
def predict_depth(model, image):
depth = model.infer_pil(image)
return depth
def create_demo(model):
gr.Markdown("### Depth Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input').style(height="auto")
depth_image = gr.Image(label="Depth Map", elem_id='img-display-output')
raw_file = gr.File(label="16-bit raw depth, multiplier:256")
submit = gr.Button("Submit")
def on_submit(image):
depth = predict_depth(model, image)
colored_depth = colorize(depth, cmap='gray_r')
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth = Image.fromarray((depth*256).astype('uint16'))
raw_depth.save(tmp.name)
return [colored_depth, tmp.name]
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file])
# examples = gr.Examples(examples=["examples/person_1.jpeg", "examples/person_2.jpeg", "examples/person-leaves.png", "examples/living-room.jpeg"],
# inputs=[input_image]) |