Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,367 Bytes
2a2a6d8 37c595d 0510aa0 37c595d 979cf8b c305f12 0510aa0 c305f12 37c595d c305f12 37c595d c305f12 37c595d c24e97b 37c595d 979cf8b c305f12 979cf8b c305f12 37c595d 979cf8b 37c595d c305f12 37c595d c305f12 37c595d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 |
import spaces
import os
import gradio as gr
import torch
from gradio_image_prompter import ImagePrompter
from sam2.sam2_image_predictor import SAM2ImagePredictor
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from copy import deepcopy
import cv2
import torch.nn.functional as F
import torchvision
from einops import rearrange
import tempfile
from objctrl_2_5d.utils.ui_utils import process_image, get_camera_pose, get_subject_points, get_points, undo_points, mask_image
from ZoeDepth.zoedepth.utils.misc import colorize
from cameractrl.inference import get_pipeline
from objctrl_2_5d.utils.examples import examples, sync_points
from objctrl_2_5d.utils.objmask_util import RT2Plucker, Unprojected, roll_with_ignore_multidim, dilate_mask_pytorch
from objctrl_2_5d.utils.filter_utils import get_freq_filter, freq_mix_3d
### Title and Description ###
#### Description ####
title = r"""<h1 align="center">ObjCtrl-2.5D: Training-free Object Control with Camera Poses</h1>"""
# subtitle = r"""<h2 align="center">Deployed on SVD Generation</h2>"""
important_link = r"""
<div align='center'>
<a href='https://wzhouxiff.github.io/projects/MotionCtrl/assets/paper/MotionCtrl.pdf'>[Paper]</a>
  <a href='https://wzhouxiff.github.io/projects/MotionCtrl/'>[Project Page]</a>
  <a href='https://github.com/TencentARC/MotionCtrl'>[Code]</a>
</div>
"""
authors = r"""
<div align='center'>
<a href='https://wzhouxiff.github.io/'>Zhouxia Wang</a>
  <a href='https://nirvanalan.github.io/'>Yushi Lan</a>
  <a href='https://shangchenzhou.com/'>Shanchen Zhou</a>
  <a href='https://www.mmlab-ntu.com/person/ccloy/index.html'>Chen Change Loy</a>
</div>
"""
affiliation = r"""
<div align='center'>
<a href='https://www.mmlab-ntu.com/'>S-Lab, NTU Singapore</a>
</div>
"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'><b>ObjCtrl-2.5D: Training-free Object Control with Camera Poses</b></a>.<br>
π₯ ObjCtrl2.5D enables object motion control in a I2V generated video via transforming 2D trajectories to 3D using depth, subsequently converting them into camera poses,
thereby leveraging the exisitng camera motion control module for object motion control without requiring additional training.<br>
"""
article = r"""
If ObjCtrl2.5D is helpful, please help to β the <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC%2FMotionCtrl
)](https://github.com/TencentARC/MotionCtrl)
---
π **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{wang2024motionctrl,
title={Motionctrl: A unified and flexible motion controller for video generation},
author={Wang, Zhouxia and Yuan, Ziyang and Wang, Xintao and Li, Yaowei and Chen, Tianshui and Xia, Menghan and Luo, Ping and Shan, Ying},
booktitle={ACM SIGGRAPH 2024 Conference Papers},
pages={1--11},
year={2024}
}
```
π§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>zhouzi1212@gmail.com</b>.
"""
# -------------- initialization --------------
CAMERA_MODE = ["Traj2Cam", "Rotate", "Clockwise", "Translate"]
# select the device for computation
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
device = torch.device("cuda")
print(f"Force device to {device} due to ZeroGPU")
print(f"using device: {device}")
# segmentation model
segmentor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny", cache_dir="ckpt", device=device)
# depth model
d_model_NK = torch.hub.load('./ZoeDepth', 'ZoeD_NK', source='local', pretrained=True).to(device)
# cameractrl model
config = "configs/svd_320_576_cameractrl.yaml"
model_id = "stabilityai/stable-video-diffusion-img2vid"
ckpt = "checkpoints/CameraCtrl_svd.ckpt"
if not os.path.exists(ckpt):
os.makedirs("checkpoints", exist_ok=True)
os.system("wget -c https://huggingface.co/hehao13/CameraCtrl_SVD_ckpts/resolve/main/CameraCtrl_svd.ckpt?download=true")
os.system("mv CameraCtrl_svd.ckpt?download=true checkpoints/CameraCtrl_svd.ckpt")
model_config = OmegaConf.load(config)
pipeline = get_pipeline(model_id, "unet", model_config['down_block_types'], model_config['up_block_types'],
model_config['pose_encoder_kwargs'], model_config['attention_processor_kwargs'],
ckpt, True, device)
# segmentor = None
# d_model_NK = None
# pipeline = None
### run the demo ##
@spaces.GPU(duration=50)
def segment(canvas, image, logits):
if logits is not None:
logits *= 32.0
_, points = get_subject_points(canvas)
image = np.array(image)
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
segmentor.set_image(image)
input_points = []
input_boxes = []
for p in points:
[x1, y1, _, x2, y2, _] = p
if x2==0 and y2==0:
input_points.append([x1, y1])
else:
input_boxes.append([x1, y1, x2, y2])
if len(input_points) == 0:
input_points = None
input_labels = None
else:
input_points = np.array(input_points)
input_labels = np.ones(len(input_points))
if len(input_boxes) == 0:
input_boxes = None
else:
input_boxes = np.array(input_boxes)
masks, _, logits = segmentor.predict(
point_coords=input_points,
point_labels=input_labels,
box=input_boxes,
multimask_output=False,
return_logits=True,
mask_input=logits,
)
mask = masks > 0
masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
masked_img = Image.fromarray(masked_img)
return mask[0], masked_img, masked_img, logits / 32.0
@spaces.GPU(duration=50)
def get_depth(image, points):
depth = d_model_NK.infer_pil(image)
colored_depth = colorize(depth, cmap='gray_r') # [h, w, 4] 0-255
depth_img = deepcopy(colored_depth[:, :, :3])
if len(points) > 0:
for idx, point in enumerate(points):
if idx % 2 == 0:
cv2.circle(depth_img, tuple(point), 10, (255, 0, 0), -1)
else:
cv2.circle(depth_img, tuple(point), 10, (0, 0, 255), -1)
if idx > 0:
cv2.arrowedLine(depth_img, points[idx-1], points[idx], (255, 255, 255), 4, tipLength=0.5)
return depth, depth_img, colored_depth[:, :, :3]
@spaces.GPU(duration=50)
def run_objctrl_2_5d(condition_image,
mask,
depth,
RTs,
bg_mode,
shared_wapring_latents,
scale_wise_masks,
rescale,
seed,
ds, dt,
num_inference_steps=25):
DEBUG = False
if DEBUG:
cur_OUTPUT_PATH = 'outputs/tmp'
os.makedirs(cur_OUTPUT_PATH, exist_ok=True)
# num_inference_steps=25
min_guidance_scale = 1.0
max_guidance_scale = 3.0
area_ratio = 0.3
depth_scale_ = 5.2
center_margin = 10
height, width = 320, 576
num_frames = 14
intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]])
intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4]
fx = intrinsics[0, 0] / width
fy = intrinsics[0, 1] / height
cx = intrinsics[0, 2] / width
cy = intrinsics[0, 3] / height
down_scale = 8
H, W = height // down_scale, width // down_scale
K = np.array([[width / down_scale, 0, W / 2], [0, width / down_scale, H / 2], [0, 0, 1]])
seed = int(seed)
center_h_margin, center_w_margin = center_margin, center_margin
depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
if rescale > 0:
depth_rescale = round(depth_scale_ * rescale / depth_center, 2)
else:
depth_rescale = 1.0
depth = depth * depth_rescale
depth_down = F.interpolate(torch.tensor(depth).unsqueeze(0).unsqueeze(0),
(H, W), mode='bilinear', align_corners=False).squeeze().numpy() # [H, W]
## latent
generator = torch.Generator()
generator.manual_seed(seed)
latents_org = pipeline.prepare_latents(
1,
14,
8,
height,
width,
pipeline.dtype,
device,
generator,
None,
)
latents_org = latents_org / pipeline.scheduler.init_noise_sigma
cur_plucker_embedding, _, _ = RT2Plucker(RTs, RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
cur_plucker_embedding = cur_plucker_embedding.to(device)
cur_plucker_embedding = cur_plucker_embedding[None, ...] # b 6 f h w
cur_plucker_embedding = cur_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
cur_plucker_embedding = cur_plucker_embedding[:, :num_frames, ...]
cur_pose_features = pipeline.pose_encoder(cur_plucker_embedding)
# bg_mode = ["Fixed", "Reverse", "Free"]
if bg_mode == "Fixed":
fix_RTs = np.repeat(RTs[0][None, ...], num_frames, axis=0) # [n_frame, 4, 3]
fix_plucker_embedding, _, _ = RT2Plucker(fix_RTs, num_frames, (height, width), fx, fy, cx, cy) # 6, V, H, W
fix_plucker_embedding = fix_plucker_embedding.to(device)
fix_plucker_embedding = fix_plucker_embedding[None, ...] # b 6 f h w
fix_plucker_embedding = fix_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
fix_plucker_embedding = fix_plucker_embedding[:, :num_frames, ...]
fix_pose_features = pipeline.pose_encoder(fix_plucker_embedding)
elif bg_mode == "Reverse":
bg_plucker_embedding, _, _ = RT2Plucker(RTs[::-1], RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
bg_plucker_embedding = bg_plucker_embedding.to(device)
bg_plucker_embedding = bg_plucker_embedding[None, ...] # b 6 f h w
bg_plucker_embedding = bg_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
bg_plucker_embedding = bg_plucker_embedding[:, :num_frames, ...]
fix_pose_features = pipeline.pose_encoder(bg_plucker_embedding)
else:
fix_pose_features = None
#### preparing mask
mask = Image.fromarray(mask)
mask = mask.resize((W, H))
mask = np.array(mask).astype(np.float32)
mask = np.expand_dims(mask, axis=-1)
# visulize mask
if DEBUG:
mask_sum_vis = mask[..., 0]
mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
mask_sum_vis = Image.fromarray(mask_sum_vis)
mask_sum_vis.save(f'{cur_OUTPUT_PATH}/org_mask.png')
try:
warped_masks = Unprojected(mask, depth_down, RTs, H=H, W=W, K=K)
warped_masks.insert(0, mask)
except:
# mask to bbox
print(f'!!! Mask is too small to warp; mask to bbox')
mask = mask[:, :, 0]
coords = cv2.findNonZero(mask)
x, y, w, h = cv2.boundingRect(coords)
# mask[y:y+h, x:x+w] = 1.0
center_x, center_y = x + w // 2, y + h // 2
center_z = depth_down[center_y, center_x]
# RTs [n_frame, 3, 4] to [n_frame, 4, 4] , add [0, 0, 0, 1]
RTs = np.concatenate([RTs, np.array([[[0, 0, 0, 1]]] * num_frames)], axis=1)
# RTs: world to camera
P0 = np.array([center_x, center_y, 1])
Pc0 = np.linalg.inv(K) @ P0 * center_z
pw = np.linalg.inv(RTs[0]) @ np.array([Pc0[0], Pc0[1], center_z, 1]) # [4]
P = [np.array([center_x, center_y])]
for i in range(1, num_frames):
Pci = RTs[i] @ pw
Pi = K @ Pci[:3] / Pci[2]
P.append(Pi[:2])
warped_masks = [mask]
for i in range(1, num_frames):
shift_x = int(round(P[i][0] - P[0][0]))
shift_y = int(round(P[i][1] - P[0][1]))
cur_mask = roll_with_ignore_multidim(mask, [shift_y, shift_x])
warped_masks.append(cur_mask)
warped_masks = [v[..., None] for v in warped_masks]
warped_masks = np.stack(warped_masks, axis=0) # [f, h, w]
warped_masks = np.repeat(warped_masks, 3, axis=-1) # [f, h, w, 3]
mask_sum = np.sum(warped_masks, axis=0, keepdims=True) # [1, H, W, 3]
mask_sum[mask_sum > 1.0] = 1.0
mask_sum = mask_sum[0,:,:, 0]
if DEBUG:
## visulize warp mask
warp_masks_vis = torch.tensor(warped_masks)
warp_masks_vis = (warp_masks_vis * 255.0).to(torch.uint8)
torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warped_masks.mp4', warp_masks_vis, fps=10, video_codec='h264', options={'crf': '10'})
# visulize mask
mask_sum_vis = mask_sum
mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
mask_sum_vis = Image.fromarray(mask_sum_vis)
mask_sum_vis.save(f'{cur_OUTPUT_PATH}/merged_mask.png')
if scale_wise_masks:
min_area = H * W * area_ratio # cal in downscale
non_zero_len = mask_sum.sum()
print(f'non_zero_len: {non_zero_len}, min_area: {min_area}')
if non_zero_len > min_area:
kernel_sizes = [1, 1, 1, 3]
elif non_zero_len > min_area * 0.5:
kernel_sizes = [3, 1, 1, 5]
else:
kernel_sizes = [5, 3, 3, 7]
else:
kernel_sizes = [1, 1, 1, 1]
mask = torch.from_numpy(mask_sum) # [h, w]
mask = mask[None, None, ...] # [1, 1, h, w]
mask = F.interpolate(mask, (height, width), mode='bilinear', align_corners=False) # [1, 1, H, W]
# mask = mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
mask = mask.to(pipeline.dtype).to(device)
##### Mask End ######
### Got blending pose features Start ###
pose_features = []
for i in range(0, len(cur_pose_features)):
kernel_size = kernel_sizes[i]
h, w = cur_pose_features[i].shape[-2:]
if fix_pose_features is None:
pose_features.append(torch.zeros_like(cur_pose_features[i]))
else:
pose_features.append(fix_pose_features[i])
cur_mask = F.interpolate(mask, (h, w), mode='bilinear', align_corners=False)
cur_mask = dilate_mask_pytorch(cur_mask, kernel_size=kernel_size) # [1, 1, H, W]
cur_mask = cur_mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
if DEBUG:
# visulize mask
mask_vis = cur_mask[0, 0].cpu().numpy() * 255.0
mask_vis = Image.fromarray(mask_vis.astype(np.uint8))
mask_vis.save(f'{cur_OUTPUT_PATH}/mask_k{kernel_size}_scale{i}.png')
cur_mask = cur_mask[None, ...] # [1, 1, f, H, W]
pose_features[-1] = cur_pose_features[i] * cur_mask + pose_features[-1] * (1 - cur_mask)
### Got blending pose features End ###
##### Warp Noise Start ######
if shared_wapring_latents:
noise = latents_org[0, 0].data.cpu().numpy().copy() #[14, 4, 40, 72]
noise = np.transpose(noise, (1, 2, 0)) # [40, 72, 4]
try:
warp_noise = Unprojected(noise, depth_down, RTs, H=H, W=W, K=K)
warp_noise.insert(0, noise)
except:
print(f'!!! Noise is too small to warp; mask to bbox')
warp_noise = [noise]
for i in range(1, num_frames):
shift_x = int(round(P[i][0] - P[0][0]))
shift_y = int(round(P[i][1] - P[0][1]))
cur_noise= roll_with_ignore_multidim(noise, [shift_y, shift_x])
warp_noise.append(cur_noise)
warp_noise = np.stack(warp_noise, axis=0) # [f, h, w, 4]
if DEBUG:
## visulize warp noise
warp_noise_vis = torch.tensor(warp_noise)[..., :3] * torch.tensor(warped_masks)
warp_noise_vis = (warp_noise_vis - warp_noise_vis.min()) / (warp_noise_vis.max() - warp_noise_vis.min())
warp_noise_vis = (warp_noise_vis * 255.0).to(torch.uint8)
torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warp_noise.mp4', warp_noise_vis, fps=10, video_codec='h264', options={'crf': '10'})
warp_latents = torch.tensor(warp_noise).permute(0, 3, 1, 2).to(latents_org.device).to(latents_org.dtype) # [frame, 4, H, W]
warp_latents = warp_latents.unsqueeze(0) # [1, frame, 4, H, W]
warped_masks = torch.tensor(warped_masks).permute(0, 3, 1, 2).unsqueeze(0) # [1, frame, 3, H, W]
mask_extend = torch.concat([warped_masks, warped_masks[:,:,0:1]], dim=2) # [1, frame, 4, H, W]
mask_extend = mask_extend.to(latents_org.device).to(latents_org.dtype)
warp_latents = warp_latents * mask_extend + latents_org * (1 - mask_extend)
warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
random_noise = latents_org.clone().permute(0, 2, 1, 3, 4)
filter_shape = warp_latents.shape
freq_filter = get_freq_filter(
filter_shape,
device = device,
filter_type='butterworth',
n=4,
d_s=ds,
d_t=dt
)
warp_latents = freq_mix_3d(warp_latents, random_noise, freq_filter)
warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
else:
warp_latents = latents_org.clone()
generator.manual_seed(42)
with torch.no_grad():
result = pipeline(
image=condition_image,
pose_embedding=cur_plucker_embedding,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
min_guidance_scale=min_guidance_scale,
max_guidance_scale=max_guidance_scale,
do_image_process=True,
generator=generator,
output_type='pt',
pose_features= pose_features,
latents = warp_latents
).frames[0].cpu() #[f, c, h, w]
result = rearrange(result, 'f c h w -> f h w c')
result = (result * 255.0).to(torch.uint8)
video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
torchvision.io.write_video(video_path, result, fps=10, video_codec='h264', options={'crf': '8'})
return video_path
# -------------- UI definition --------------
with gr.Blocks() as demo:
# layout definition
gr.Markdown(title)
gr.Markdown(authors)
gr.Markdown(affiliation)
gr.Markdown(important_link)
gr.Markdown(description)
# with gr.Row():
# gr.Markdown("""# <center>Repositioning the Subject within Image </center>""")
mask = gr.State(value=None) # store mask
removal_mask = gr.State(value=None) # store removal mask
selected_points = gr.State([]) # store points
selected_points_text = gr.Textbox(label="Selected Points", visible=False)
original_image = gr.State(value=None) # store original input image
masked_original_image = gr.State(value=None) # store masked input image
mask_logits = gr.State(value=None) # store mask logits
depth = gr.State(value=None) # store depth
org_depth_image = gr.State(value=None) # store original depth image
camera_pose = gr.State(value=None) # store camera pose
with gr.Column():
outlines = """
<font size="5"><b>There are total 5 steps to complete the task.</b></font>
- Step 1: Input an image and Crop it to a suitable size;
- Step 2: Attain the subject mask;
- Step 3: Get depth and Draw Trajectory;
- Step 4: Get camera pose from trajectory or customize it;
- Step 5: Generate the final video.
"""
gr.Markdown(outlines)
with gr.Row():
with gr.Column():
# Step 1: Input Image
step1_dec = """
<font size="4"><b>Step 1: Input Image</b></font>
- Select the region using a <mark>bounding box</mark>, aiming for a ratio close to </mark>320:576</mark> (height:width).
- All provided images in `Examples` are in 320 x 576 resolution. Simply press `Process` to proceed.
"""
step1 = gr.Markdown(step1_dec)
raw_input = ImagePrompter(type="pil", label="Raw Image", show_label=True, interactive=True)
# left_up_point = gr.Textbox(value = "-1 -1", label="Left Up Point", interactive=True)
process_button = gr.Button("Process")
with gr.Column():
# Step 2: Get Subject Mask
step2_dec = """
<font size="4"><b>Step 2: Get Subject Mask</b></font>
- Use the <mark>bounding boxes</mark> or <mark>paints</mark> to select the subject.
- Press `Segment Subject` to get the mask. <mark>Can be refined iteratively by updating points<mark>.
"""
step2 = gr.Markdown(step2_dec)
canvas = ImagePrompter(type="pil", label="Input Image", show_label=True, interactive=True) # for mask painting
select_button = gr.Button("Segment Subject")
with gr.Row():
with gr.Column():
mask_dec = """
<font size="4"><b>Mask Result</b></font>
- Just for visualization purpose. No need to interact.
"""
mask_vis = gr.Markdown(mask_dec)
mask_output = gr.Image(type="pil", label="Mask", show_label=True, interactive=False)
with gr.Column():
# Step 3: Get Depth and Draw Trajectory
step3_dec = """
<font size="4"><b>Step 3: Get Depth and Draw Trajectory</b></font>
- Press `Get Depth` to get the depth image.
- Draw the trajectory by selecting points on the depth image. <mark>No more than 14 points</mark>.
- Press `Undo point` to remove all points.
"""
step3 = gr.Markdown(step3_dec)
depth_image = gr.Image(type="pil", label="Depth Image", show_label=True, interactive=False)
with gr.Row():
depth_button = gr.Button("Get Depth")
undo_button = gr.Button("Undo point")
with gr.Row():
with gr.Column():
# Step 4: Trajectory to Camera Pose or Get Camera Pose
step4_dec = """
<font size="4"><b>Step 4: Get camera pose from trajectory or customize it</b></font>
- Option 1: Transform the 2D trajectory to camera poses with depth. <mark>`Rescale` is used for depth alignment. Larger value can speed up the object motion.</mark>
- Option 2: Rotate the camera with a specific `Angle`.
- Option 3: Rotate the camera clockwise or counterclockwise with a specific `Angle`.
- Option 4: Translate the camera with `Tx` (<mark>Pan Left/Right</mark>), `Ty` (<mark>Pan Up/Down</mark>), `Tz` (<mark>Zoom In/Out</mark>) and `Speed`.
"""
step4 = gr.Markdown(step4_dec)
camera_pose_vis = gr.Plot(None, label='Camera Pose')
with gr.Row():
with gr.Column():
speed = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=1.0, label="Speed", interactive=True)
rescale = gr.Slider(minimum=0.0, maximum=10, step=0.1, value=1.0, label="Rescale", interactive=True)
# traj2pose_button = gr.Button("Option1: Trajectory to Camera Pose")
angle = gr.Slider(minimum=-360, maximum=360, step=1, value=60, label="Angle", interactive=True)
# rotation_button = gr.Button("Option2: Rotate")
# clockwise_button = gr.Button("Option3: Clockwise")
with gr.Column():
Tx = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Tx", interactive=True)
Ty = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Ty", interactive=True)
Tz = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Tz", interactive=True)
# translation_button = gr.Button("Option4: Translate")
with gr.Row():
camera_option = gr.Radio(choices = CAMERA_MODE, label='Camera Options', value=CAMERA_MODE[0], interactive=True)
with gr.Row():
get_camera_pose_button = gr.Button("Get Camera Pose")
with gr.Column():
# Step 5: Get the final generated video
step5_dec = """
<font size="4"><b>Step 5: Get the final generated video</b></font>
- 3 modes for background: <mark>Fixed</mark>, <mark>Reverse</mark>, <mark>Free</mark>.
- Enable <mark>Scale-wise Masks</mark> for better object control.
- Option to enable <mark>Shared Warping Latents</mark> and set <mark>stop frequency</mark> for spatial (`ds`) and temporal (`dt`) dimensions. Larger stop frequency will lead to artifacts.
"""
step5 = gr.Markdown(step5_dec)
generated_video = gr.Video(None, label='Generated Video')
with gr.Row():
seed = gr.Textbox(value = "42", label="Seed", interactive=True)
# num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Number of Inference Steps", interactive=True)
bg_mode = gr.Radio(choices = ["Fixed", "Reverse", "Free"], label="Background Mode", value="Fixed", interactive=True)
# swl_mode = gr.Radio(choices = ["Enable SWL", "Disable SWL"], label="Shared Warping Latent", value="Disable SWL", interactive=True)
scale_wise_masks = gr.Checkbox(label="Enable Scale-wise Masks", interactive=True, value=True)
with gr.Row():
with gr.Column():
shared_wapring_latents = gr.Checkbox(label="Enable Shared Warping Latents", interactive=True)
with gr.Column():
ds = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.5, label="ds", interactive=True)
dt = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.5, label="dt", interactive=True)
generated_button = gr.Button("Generate")
# # event definition
process_button.click(
fn = process_image,
inputs = [raw_input],
outputs = [original_image, canvas]
)
select_button.click(
segment,
[canvas, original_image, mask_logits],
[mask, mask_output, masked_original_image, mask_logits]
)
depth_button.click(
get_depth,
[original_image, selected_points],
[depth, depth_image, org_depth_image]
)
depth_image.select(
get_points,
[depth_image, selected_points],
[depth_image, selected_points],
)
undo_button.click(
undo_points,
[org_depth_image],
[depth_image, selected_points]
)
get_camera_pose_button.click(
get_camera_pose(CAMERA_MODE),
[camera_option, selected_points, depth, mask, rescale, angle, Tx, Ty, Tz, speed],
[camera_pose, camera_pose_vis]
)
generated_button.click(
run_objctrl_2_5d,
[
original_image,
mask,
depth,
camera_pose,
bg_mode,
shared_wapring_latents,
scale_wise_masks,
rescale,
seed,
ds,
dt,
# num_inference_steps
],
[generated_video],
)
gr.Examples(
examples=examples,
inputs=[
raw_input,
rescale,
speed,
angle,
Tx,
Ty,
Tz,
camera_option,
bg_mode,
shared_wapring_latents,
scale_wise_masks,
ds,
dt,
seed,
selected_points_text # selected_points
],
outputs=[generated_video],
examples_per_page=10
)
selected_points_text.change(
sync_points,
inputs=[selected_points_text],
outputs=[selected_points]
)
gr.Markdown(article)
demo.queue().launch(share=True)
|