File size: 5,174 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import glob
import os

import h5py
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms


def hypersim_distance_to_depth(npyDistance):
    intWidth, intHeight, fltFocal = 1024, 768, 886.81

    npyImageplaneX = np.linspace((-0.5 * intWidth) + 0.5, (0.5 * intWidth) - 0.5, intWidth).reshape(
        1, intWidth).repeat(intHeight, 0).astype(np.float32)[:, :, None]
    npyImageplaneY = np.linspace((-0.5 * intHeight) + 0.5, (0.5 * intHeight) - 0.5,
                                 intHeight).reshape(intHeight, 1).repeat(intWidth, 1).astype(np.float32)[:, :, None]
    npyImageplaneZ = np.full([intHeight, intWidth, 1], fltFocal, np.float32)
    npyImageplane = np.concatenate(
        [npyImageplaneX, npyImageplaneY, npyImageplaneZ], 2)

    npyDepth = npyDistance / np.linalg.norm(npyImageplane, 2, 2) * fltFocal
    return npyDepth


class ToTensor(object):
    def __init__(self):
        # self.normalize = transforms.Normalize(
        #     mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        self.normalize = lambda x: x
        self.resize = transforms.Resize((480, 640))

    def __call__(self, sample):
        image, depth = sample['image'], sample['depth']
        image = self.to_tensor(image)
        image = self.normalize(image)
        depth = self.to_tensor(depth)

        image = self.resize(image)

        return {'image': image, 'depth': depth, 'dataset': "hypersim"}

    def to_tensor(self, pic):

        if isinstance(pic, np.ndarray):
            img = torch.from_numpy(pic.transpose((2, 0, 1)))
            return img

        #         # handle PIL Image
        if pic.mode == 'I':
            img = torch.from_numpy(np.array(pic, np.int32, copy=False))
        elif pic.mode == 'I;16':
            img = torch.from_numpy(np.array(pic, np.int16, copy=False))
        else:
            img = torch.ByteTensor(
                torch.ByteStorage.from_buffer(pic.tobytes()))
        # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
        if pic.mode == 'YCbCr':
            nchannel = 3
        elif pic.mode == 'I;16':
            nchannel = 1
        else:
            nchannel = len(pic.mode)
        img = img.view(pic.size[1], pic.size[0], nchannel)

        img = img.transpose(0, 1).transpose(0, 2).contiguous()
        if isinstance(img, torch.ByteTensor):
            return img.float()
        else:
            return img


class HyperSim(Dataset):
    def __init__(self, data_dir_root):
        # image paths are of the form <data_dir_root>/<scene>/images/scene_cam_#_final_preview/*.tonemap.jpg
        # depth paths are of the form <data_dir_root>/<scene>/images/scene_cam_#_final_preview/*.depth_meters.hdf5
        self.image_files = glob.glob(os.path.join(
            data_dir_root, '*', 'images', 'scene_cam_*_final_preview', '*.tonemap.jpg'))
        self.depth_files = [r.replace("_final_preview", "_geometry_hdf5").replace(
            ".tonemap.jpg", ".depth_meters.hdf5") for r in self.image_files]
        self.transform = ToTensor()

    def __getitem__(self, idx):
        image_path = self.image_files[idx]
        depth_path = self.depth_files[idx]

        image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0

        # depth from hdf5
        depth_fd = h5py.File(depth_path, "r")
        # in meters (Euclidean distance)
        distance_meters = np.array(depth_fd['dataset'])
        depth = hypersim_distance_to_depth(
            distance_meters)  # in meters (planar depth)

        # depth[depth > 8] = -1
        depth = depth[..., None]

        sample = dict(image=image, depth=depth)
        sample = self.transform(sample)

        if idx == 0:
            print(sample["image"].shape)

        return sample

    def __len__(self):
        return len(self.image_files)


def get_hypersim_loader(data_dir_root, batch_size=1, **kwargs):
    dataset = HyperSim(data_dir_root)
    return DataLoader(dataset, batch_size, **kwargs)