Spaces:
Running
on
Zero
Running
on
Zero
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import os | |
import numpy as np | |
import torch | |
from PIL import Image | |
from torch.utils.data import DataLoader, Dataset | |
from torchvision import transforms | |
class ToTensor(object): | |
def __init__(self, resize_shape): | |
# self.normalize = transforms.Normalize( | |
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
self.normalize = lambda x : x | |
self.resize = transforms.Resize(resize_shape) | |
def __call__(self, sample): | |
image, depth = sample['image'], sample['depth'] | |
image = self.to_tensor(image) | |
image = self.normalize(image) | |
depth = self.to_tensor(depth) | |
image = self.resize(image) | |
return {'image': image, 'depth': depth, 'dataset': "ddad"} | |
def to_tensor(self, pic): | |
if isinstance(pic, np.ndarray): | |
img = torch.from_numpy(pic.transpose((2, 0, 1))) | |
return img | |
# # handle PIL Image | |
if pic.mode == 'I': | |
img = torch.from_numpy(np.array(pic, np.int32, copy=False)) | |
elif pic.mode == 'I;16': | |
img = torch.from_numpy(np.array(pic, np.int16, copy=False)) | |
else: | |
img = torch.ByteTensor( | |
torch.ByteStorage.from_buffer(pic.tobytes())) | |
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK | |
if pic.mode == 'YCbCr': | |
nchannel = 3 | |
elif pic.mode == 'I;16': | |
nchannel = 1 | |
else: | |
nchannel = len(pic.mode) | |
img = img.view(pic.size[1], pic.size[0], nchannel) | |
img = img.transpose(0, 1).transpose(0, 2).contiguous() | |
if isinstance(img, torch.ByteTensor): | |
return img.float() | |
else: | |
return img | |
class DDAD(Dataset): | |
def __init__(self, data_dir_root, resize_shape): | |
import glob | |
# image paths are of the form <data_dir_root>/{outleft, depthmap}/*.png | |
self.image_files = glob.glob(os.path.join(data_dir_root, '*.png')) | |
self.depth_files = [r.replace("_rgb.png", "_depth.npy") | |
for r in self.image_files] | |
self.transform = ToTensor(resize_shape) | |
def __getitem__(self, idx): | |
image_path = self.image_files[idx] | |
depth_path = self.depth_files[idx] | |
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0 | |
depth = np.load(depth_path) # meters | |
# depth[depth > 8] = -1 | |
depth = depth[..., None] | |
sample = dict(image=image, depth=depth) | |
sample = self.transform(sample) | |
if idx == 0: | |
print(sample["image"].shape) | |
return sample | |
def __len__(self): | |
return len(self.image_files) | |
def get_ddad_loader(data_dir_root, resize_shape, batch_size=1, **kwargs): | |
dataset = DDAD(data_dir_root, resize_shape) | |
return DataLoader(dataset, batch_size, **kwargs) | |