wzhouxiff
init
38e3f9b
raw
history blame
15.3 kB
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import math
import random
import cv2
import numpy as np
class RandomFliplr(object):
"""Horizontal flip of the sample with given probability.
"""
def __init__(self, probability=0.5):
"""Init.
Args:
probability (float, optional): Flip probability. Defaults to 0.5.
"""
self.__probability = probability
def __call__(self, sample):
prob = random.random()
if prob < self.__probability:
for k, v in sample.items():
if len(v.shape) >= 2:
sample[k] = np.fliplr(v).copy()
return sample
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
)
sample["disparity"] = cv2.resize(
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class RandomCrop(object):
"""Get a random crop of the sample with the given size (width, height).
"""
def __init__(
self,
width,
height,
resize_if_needed=False,
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): output width
height (int): output height
resize_if_needed (bool, optional): If True, sample might be upsampled to ensure
that a crop of size (width, height) is possbile. Defaults to False.
"""
self.__size = (height, width)
self.__resize_if_needed = resize_if_needed
self.__image_interpolation_method = image_interpolation_method
def __call__(self, sample):
shape = sample["disparity"].shape
if self.__size[0] > shape[0] or self.__size[1] > shape[1]:
if self.__resize_if_needed:
shape = apply_min_size(
sample, self.__size, self.__image_interpolation_method
)
else:
raise Exception(
"Output size {} bigger than input size {}.".format(
self.__size, shape
)
)
offset = (
np.random.randint(shape[0] - self.__size[0] + 1),
np.random.randint(shape[1] - self.__size[1] + 1),
)
for k, v in sample.items():
if k == "code" or k == "basis":
continue
if len(sample[k].shape) >= 2:
sample[k] = v[
offset[0]: offset[0] + self.__size[0],
offset[1]: offset[1] + self.__size[1],
]
return sample
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
letter_box=False,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
self.__letter_box = letter_box
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of)
* self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of)
* self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def make_letter_box(self, sample):
top = bottom = (self.__height - sample.shape[0]) // 2
left = right = (self.__width - sample.shape[1]) // 2
sample = cv2.copyMakeBorder(
sample, top, bottom, left, right, cv2.BORDER_CONSTANT, None, 0)
return sample
def __call__(self, sample):
width, height = self.get_size(
sample["image"].shape[1], sample["image"].shape[0]
)
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__letter_box:
sample["image"] = self.make_letter_box(sample["image"])
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if self.__letter_box:
sample["disparity"] = self.make_letter_box(
sample["disparity"])
if "depth" in sample:
sample["depth"] = cv2.resize(
sample["depth"], (width,
height), interpolation=cv2.INTER_NEAREST
)
if self.__letter_box:
sample["depth"] = self.make_letter_box(sample["depth"])
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if self.__letter_box:
sample["mask"] = self.make_letter_box(sample["mask"])
sample["mask"] = sample["mask"].astype(bool)
return sample
class ResizeFixed(object):
def __init__(self, size):
self.__size = size
def __call__(self, sample):
sample["image"] = cv2.resize(
sample["image"], self.__size[::-1], interpolation=cv2.INTER_LINEAR
)
sample["disparity"] = cv2.resize(
sample["disparity"], self.__size[::-
1], interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
self.__size[::-1],
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return sample
class Rescale(object):
"""Rescale target values to the interval [0, max_val].
If input is constant, values are set to max_val / 2.
"""
def __init__(self, max_val=1.0, use_mask=True):
"""Init.
Args:
max_val (float, optional): Max output value. Defaults to 1.0.
use_mask (bool, optional): Only operate on valid pixels (mask == True). Defaults to True.
"""
self.__max_val = max_val
self.__use_mask = use_mask
def __call__(self, sample):
disp = sample["disparity"]
if self.__use_mask:
mask = sample["mask"]
else:
mask = np.ones_like(disp, dtype=np.bool)
if np.sum(mask) == 0:
return sample
min_val = np.min(disp[mask])
max_val = np.max(disp[mask])
if max_val > min_val:
sample["disparity"][mask] = (
(disp[mask] - min_val) / (max_val - min_val) * self.__max_val
)
else:
sample["disparity"][mask] = np.ones_like(
disp[mask]) * self.__max_val / 2.0
return sample
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
class NormalizeImage(object):
"""Normlize image by given mean and std.
"""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class DepthToDisparity(object):
"""Convert depth to disparity. Removes depth from sample.
"""
def __init__(self, eps=1e-4):
self.__eps = eps
def __call__(self, sample):
assert "depth" in sample
sample["mask"][sample["depth"] < self.__eps] = False
sample["disparity"] = np.zeros_like(sample["depth"])
sample["disparity"][sample["depth"] >= self.__eps] = (
1.0 / sample["depth"][sample["depth"] >= self.__eps]
)
del sample["depth"]
return sample
class DisparityToDepth(object):
"""Convert disparity to depth. Removes disparity from sample.
"""
def __init__(self, eps=1e-4):
self.__eps = eps
def __call__(self, sample):
assert "disparity" in sample
disp = np.abs(sample["disparity"])
sample["mask"][disp < self.__eps] = False
# print(sample["disparity"])
# print(sample["mask"].sum())
# exit()
sample["depth"] = np.zeros_like(disp)
sample["depth"][disp >= self.__eps] = (
1.0 / disp[disp >= self.__eps]
)
del sample["disparity"]
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input.
"""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "disparity" in sample:
disparity = sample["disparity"].astype(np.float32)
sample["disparity"] = np.ascontiguousarray(disparity)
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
return sample