wzhouxiff
env
8c00727
raw
history blame
8.75 kB
import gradio as gr
from PIL import Image
import numpy as np
from copy import deepcopy
import cv2
import torch
from ZoeDepth.zoedepth.utils.misc import colorize
from objctrl_2_5d.utils.vis_camera import vis_camera_rescale
from objctrl_2_5d.utils.objmask_util import trajectory_to_camera_poses_v1
from objctrl_2_5d.utils.customized_cam import rotation, clockwise, pan_and_zoom
zc_threshold = 0.2
depth_scale_ = 5.2
center_margin = 10
height, width = 320, 576
num_frames = 14
intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]])
intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4]
fx = intrinsics[0, 0] / width
fy = intrinsics[0, 1] / height
cx = intrinsics[0, 2] / width
cy = intrinsics[0, 3] / height
def process_image(raw_image):
image, points = raw_image['image'], raw_image['points']
print(points)
try:
assert(len(points)) == 1, "Please select only one point"
[x1, y1, _, x2, y2, _] = points[0]
image = image.crop((x1, y1, x2, y2))
image = image.resize((width, height))
except:
image = image.resize((width, height))
return image, gr.update(value={'image': image})
# -------------- general UI functionality --------------
def get_subject_points(canvas):
return canvas["image"], canvas["points"]
def run_segment(segmentor):
def segment(canvas, image, logits):
if logits is not None:
logits *= 32.0
_, points = get_subject_points(canvas)
image = np.array(image)
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
segmentor.set_image(image)
input_points = []
input_boxes = []
for p in points:
[x1, y1, _, x2, y2, _] = p
if x2==0 and y2==0:
input_points.append([x1, y1])
else:
input_boxes.append([x1, y1, x2, y2])
if len(input_points) == 0:
input_points = None
input_labels = None
else:
input_points = np.array(input_points)
input_labels = np.ones(len(input_points))
if len(input_boxes) == 0:
input_boxes = None
else:
input_boxes = np.array(input_boxes)
masks, _, logits = segmentor.predict(
point_coords=input_points,
point_labels=input_labels,
box=input_boxes,
multimask_output=False,
return_logits=True,
mask_input=logits,
)
mask = masks > 0
masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
masked_img = Image.fromarray(masked_img)
return mask[0], masked_img, masked_img, logits / 32.0
return segment
def mask_image(image,
mask,
color=[255,0,0],
alpha=0.5):
""" Overlay mask on image for visualization purpose.
Args:
image (H, W, 3) or (H, W): input image
mask (H, W): mask to be overlaid
color: the color of overlaid mask
alpha: the transparency of the mask
"""
out = deepcopy(image)
img = deepcopy(image)
img[mask == 1] = color
out = cv2.addWeighted(img, alpha, out, 1-alpha, 0, out)
return out
def get_points(img,
sel_pix,
evt: gr.SelectData):
# collect the selected point
img = np.array(img)
img = deepcopy(img)
sel_pix.append(evt.index)
# only draw the last two points
# if len(sel_pix) > 2:
# sel_pix = sel_pix[-2:]
points = []
for idx, point in enumerate(sel_pix):
if idx % 2 == 0:
# draw a red circle at the handle point
cv2.circle(img, tuple(point), 10, (255, 0, 0), -1)
else:
# draw a blue circle at the handle point
cv2.circle(img, tuple(point), 10, (0, 0, 255), -1)
points.append(tuple(point))
# draw an arrow from handle point to target point
# if len(points) == idx + 1:
if idx > 0:
cv2.arrowedLine(img, points[idx-1], points[idx], (255, 255, 255), 4, tipLength=0.5)
# points = []
return img if isinstance(img, np.ndarray) else np.array(img), sel_pix
# clear all handle/target points
def undo_points(original_image):
return original_image, []
def run_depth(d_model_NK):
def get_depth(image, points):
depth = d_model_NK.infer_pil(image)
colored_depth = colorize(depth, cmap='gray_r') # [h, w, 4] 0-255
depth_img = deepcopy(colored_depth[:, :, :3])
if len(points) > 0:
for idx, point in enumerate(points):
if idx % 2 == 0:
cv2.circle(depth_img, tuple(point), 10, (255, 0, 0), -1)
else:
cv2.circle(depth_img, tuple(point), 10, (0, 0, 255), -1)
if idx > 0:
cv2.arrowedLine(depth_img, points[idx-1], points[idx], (255, 255, 255), 4, tipLength=0.5)
return depth, depth_img, colored_depth[:, :, :3]
return get_depth
def interpolate_points(points, num_points):
x = points[:, 0]
y = points[:, 1]
# Interpolating the points
t = np.linspace(0, 1, len(points))
t_new = np.linspace(0, 1, num_points)
x_new = np.interp(t_new, t, x)
y_new = np.interp(t_new, t, y)
return np.vstack((x_new, y_new)).T # []
def traj2cam(traj, depth, rescale):
traj = np.array(traj)
trajectory = interpolate_points(traj, num_frames)
center_h_margin, center_w_margin = center_margin, center_margin
depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
depth_rescale = round(depth_scale_ * rescale / depth_center, 2)
r_depth = depth * depth_rescale
zc = []
for i in range(num_frames):
zc.append(r_depth[int(trajectory[i][1]), int(trajectory[i][0])])
# print(f'zc: {zc}')
## norm zc
zc_norm = np.array(zc)
zc_grad = zc_norm[1:] - zc_norm[:-1]
zc_grad = np.abs(zc_grad)
zc_grad = zc_grad[1:] - zc_grad[:-1]
zc_grad_std = np.std(zc_grad)
if zc_grad_std > zc_threshold:
zc = [zc[0]] * num_frames
# print(f'zc_grad_std: {zc_grad_std}, zc_threshold: {zc_threshold}')
# print(f'zc: {zc}')
traj_w2c = trajectory_to_camera_poses_v1(trajectory, intrinsics, num_frames, zc=zc) # numpy: [n_frame, 4, 4]
RTs = traj_w2c[:, :3]
fig = vis_camera_rescale(RTs)
return RTs, fig
def get_rotate_cam(angle, depth):
# mean_depth = np.mean(depth * mask)
center_h_margin, center_w_margin = center_margin, center_margin
depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
print(f'rotate depth_center: {depth_center}')
RTs = rotation(num_frames, angle, depth_center, depth_center)
fig = vis_camera_rescale(RTs)
return RTs, fig
def get_clockwise_cam(angle, depth, mask):
mask = mask.astype(np.float32) # [0, 1]
mean_depth = np.mean(depth * mask)
# center_h_margin, center_w_margin = center_margin, center_margin
# depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
RTs = clockwise(angle, num_frames)
RTs[:, -1, -1] = mean_depth
fig = vis_camera_rescale(RTs)
return RTs, fig
def get_translate_cam(Tx, Ty, Tz, depth, mask, speed):
mask = mask.astype(np.float32) # [0, 1]
mean_depth = np.mean(depth * mask)
T = np.array([Tx, Ty, Tz])
T = T.reshape(3, 1)
T = T[None, ...].repeat(num_frames, axis=0)
RTs = pan_and_zoom(T, speed, n=num_frames)
RTs[:, -1, -1] += mean_depth
fig = vis_camera_rescale(RTs)
return RTs, fig
def get_camera_pose(camera_mode):
def trigger_camera_pose(camera_option, selected_points, depth, mask, rescale, angle, Tx, Ty, Tz, speed):
if camera_option == camera_mode[0]: # traj2cam
return traj2cam(selected_points, depth, rescale)
elif camera_option == camera_mode[1]: # rotate
return get_rotate_cam(angle, depth)
elif camera_option == camera_mode[2]: # clockwise
return get_clockwise_cam(angle, depth, mask)
elif camera_option == camera_mode[3]: # translate
return get_translate_cam(Tx, Ty, Tz, depth, mask, speed)
return trigger_camera_pose