Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
from typing import Callable, Optional | |
import torch | |
from torch import nn | |
from diffusers.utils import BaseOutput | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.attention import FeedForward | |
from typing import Dict, Any | |
from cameractrl.models.attention_processor import PoseAdaptorAttnProcessor | |
from einops import rearrange | |
import math | |
class InflatedGroupNorm(nn.GroupNorm): | |
def forward(self, x): | |
# return super().forward(x) | |
video_length = x.shape[2] | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
x = super().forward(x) | |
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
return x | |
def zero_module(module): | |
# Zero out the parameters of a module and return it. | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class TemporalTransformer3DModelOutput(BaseOutput): | |
sample: torch.FloatTensor | |
def get_motion_module( | |
in_channels, | |
motion_module_type: str, | |
motion_module_kwargs: dict | |
): | |
if motion_module_type == "Vanilla": | |
return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs) | |
else: | |
raise ValueError | |
class VanillaTemporalModule(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads=8, | |
num_transformer_block=2, | |
attention_block_types=("Temporal_Self",), | |
temporal_position_encoding=True, | |
temporal_position_encoding_max_len=32, | |
temporal_attention_dim_div=1, | |
cross_attention_dim=320, | |
zero_initialize=True, | |
encoder_hidden_states_query=(False, False), | |
attention_activation_scale=1.0, | |
attention_processor_kwargs: Dict = {}, | |
causal_temporal_attention=False, | |
causal_temporal_attention_mask_type="", | |
rescale_output_factor=1.0 | |
): | |
super().__init__() | |
self.temporal_transformer = TemporalTransformer3DModel( | |
in_channels=in_channels, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, | |
num_layers=num_transformer_block, | |
attention_block_types=attention_block_types, | |
cross_attention_dim=cross_attention_dim, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
encoder_hidden_states_query=encoder_hidden_states_query, | |
attention_activation_scale=attention_activation_scale, | |
attention_processor_kwargs=attention_processor_kwargs, | |
causal_temporal_attention=causal_temporal_attention, | |
causal_temporal_attention_mask_type=causal_temporal_attention_mask_type, | |
rescale_output_factor=rescale_output_factor | |
) | |
if zero_initialize: | |
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) | |
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, | |
cross_attention_kwargs: Dict[str, Any] = {}): | |
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask, cross_attention_kwargs=cross_attention_kwargs) | |
output = hidden_states | |
return output | |
class TemporalTransformer3DModel(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads, | |
attention_head_dim, | |
num_layers, | |
attention_block_types=("Temporal_Self", "Temporal_Self",), | |
dropout=0.0, | |
norm_num_groups=32, | |
cross_attention_dim=320, | |
activation_fn="geglu", | |
attention_bias=False, | |
upcast_attention=False, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=32, | |
encoder_hidden_states_query=(False, False), | |
attention_activation_scale=1.0, | |
attention_processor_kwargs: Dict = {}, | |
causal_temporal_attention=None, | |
causal_temporal_attention_mask_type="", | |
rescale_output_factor=1.0 | |
): | |
super().__init__() | |
assert causal_temporal_attention is not None | |
self.causal_temporal_attention = causal_temporal_attention | |
assert (not causal_temporal_attention) or (causal_temporal_attention_mask_type != "") | |
self.causal_temporal_attention_mask_type = causal_temporal_attention_mask_type | |
self.causal_temporal_attention_mask = None | |
inner_dim = num_attention_heads * attention_head_dim | |
self.norm = InflatedGroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
TemporalTransformerBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
attention_block_types=attention_block_types, | |
dropout=dropout, | |
norm_num_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
upcast_attention=upcast_attention, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
encoder_hidden_states_query=encoder_hidden_states_query, | |
attention_activation_scale=attention_activation_scale, | |
attention_processor_kwargs=attention_processor_kwargs, | |
rescale_output_factor=rescale_output_factor, | |
) | |
for d in range(num_layers) | |
] | |
) | |
self.proj_out = nn.Linear(inner_dim, in_channels) | |
def get_causal_temporal_attention_mask(self, hidden_states): | |
batch_size, sequence_length, dim = hidden_states.shape | |
if self.causal_temporal_attention_mask is None or self.causal_temporal_attention_mask.shape != ( | |
batch_size, sequence_length, sequence_length): | |
if self.causal_temporal_attention_mask_type == "causal": | |
# 1. vanilla causal mask | |
mask = torch.tril(torch.ones(sequence_length, sequence_length)) | |
elif self.causal_temporal_attention_mask_type == "2-seq": | |
# 2. 2-seq | |
mask = torch.zeros(sequence_length, sequence_length) | |
mask[:sequence_length // 2, :sequence_length // 2] = 1 | |
mask[-sequence_length // 2:, -sequence_length // 2:] = 1 | |
elif self.causal_temporal_attention_mask_type == "0-prev": | |
# attn to the previous frame | |
indices = torch.arange(sequence_length) | |
indices_prev = indices - 1 | |
indices_prev[0] = 0 | |
mask = torch.zeros(sequence_length, sequence_length) | |
mask[:, 0] = 1. | |
mask[indices, indices_prev] = 1. | |
elif self.causal_temporal_attention_mask_type == "0": | |
# only attn to first frame | |
mask = torch.zeros(sequence_length, sequence_length) | |
mask[:, 0] = 1 | |
elif self.causal_temporal_attention_mask_type == "wo-self": | |
indices = torch.arange(sequence_length) | |
mask = torch.ones(sequence_length, sequence_length) | |
mask[indices, indices] = 0 | |
elif self.causal_temporal_attention_mask_type == "circle": | |
indices = torch.arange(sequence_length) | |
indices_prev = indices - 1 | |
indices_prev[0] = 0 | |
mask = torch.eye(sequence_length) | |
mask[indices, indices_prev] = 1 | |
mask[0, -1] = 1 | |
else: | |
raise ValueError | |
# generate attention mask fron binary values | |
mask = mask.masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) | |
mask = mask.unsqueeze(0) | |
mask = mask.repeat(batch_size, 1, 1) | |
self.causal_temporal_attention_mask = mask.to(hidden_states.device) | |
return self.causal_temporal_attention_mask | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, | |
cross_attention_kwargs: Dict[str, Any] = {},): | |
residual = hidden_states | |
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
height, width = hidden_states.shape[-2:] | |
hidden_states = self.norm(hidden_states) | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b h w) f c") | |
hidden_states = self.proj_in(hidden_states) | |
attention_mask = self.get_causal_temporal_attention_mask( | |
hidden_states) if self.causal_temporal_attention else attention_mask | |
# Transformer Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs) | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = rearrange(hidden_states, "(b h w) f c -> b c f h w", h=height, w=width) | |
output = hidden_states + residual | |
return output | |
class TemporalTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_attention_heads, | |
attention_head_dim, | |
attention_block_types=("Temporal_Self", "Temporal_Self",), | |
dropout=0.0, | |
norm_num_groups=32, | |
cross_attention_dim=768, | |
activation_fn="geglu", | |
attention_bias=False, | |
upcast_attention=False, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=32, | |
encoder_hidden_states_query=(False, False), | |
attention_activation_scale=1.0, | |
attention_processor_kwargs: Dict = {}, | |
rescale_output_factor=1.0 | |
): | |
super().__init__() | |
attention_blocks = [] | |
norms = [] | |
self.attention_block_types = attention_block_types | |
for block_idx, block_name in enumerate(attention_block_types): | |
attention_blocks.append( | |
TemporalSelfAttention( | |
attention_mode=block_name, | |
cross_attention_dim=cross_attention_dim if block_name in ['Temporal_Cross', 'Temporal_Pose_Adaptor'] else None, | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
rescale_output_factor=rescale_output_factor, | |
) | |
) | |
norms.append(nn.LayerNorm(dim)) | |
self.attention_blocks = nn.ModuleList(attention_blocks) | |
self.norms = nn.ModuleList(norms) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.ff_norm = nn.LayerNorm(dim) | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs: Dict[str, Any] = {}): | |
for attention_block, norm, attention_block_type in zip(self.attention_blocks, self.norms, self.attention_block_types): | |
norm_hidden_states = norm(hidden_states) | |
hidden_states = attention_block( | |
norm_hidden_states, | |
encoder_hidden_states=norm_hidden_states if attention_block_type == 'Temporal_Self' else encoder_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs | |
) + hidden_states | |
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
output = hidden_states | |
return output | |
class PositionalEncoding(nn.Module): | |
def __init__( | |
self, | |
d_model, | |
dropout=0., | |
max_len=32, | |
): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
pe = torch.zeros(1, max_len, d_model) | |
pe[0, :, 0::2] = torch.sin(position * div_term) | |
pe[0, :, 1::2] = torch.cos(position * div_term) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
x = x + self.pe[:, :x.size(1)] | |
return self.dropout(x) | |
class TemporalSelfAttention(Attention): | |
def __init__( | |
self, | |
attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=32, | |
rescale_output_factor=1.0, | |
*args, **kwargs | |
): | |
super().__init__(*args, **kwargs) | |
assert attention_mode == "Temporal_Self" | |
self.pos_encoder = PositionalEncoding( | |
kwargs["query_dim"], | |
max_len=temporal_position_encoding_max_len | |
) if temporal_position_encoding else None | |
self.rescale_output_factor = rescale_output_factor | |
def set_use_memory_efficient_attention_xformers( | |
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None | |
): | |
# disable motion module efficient xformers to avoid bad results, don't know why | |
# TODO: fix this bug | |
pass | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs): | |
# The `Attention` class can call different attention processors / attention functions | |
# here we simply pass along all tensors to the selected processor class | |
# For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
# add position encoding | |
if self.pos_encoder is not None: | |
hidden_states = self.pos_encoder(hidden_states) | |
if "pose_feature" in cross_attention_kwargs: | |
pose_feature = cross_attention_kwargs["pose_feature"] | |
if pose_feature.ndim == 5: | |
pose_feature = rearrange(pose_feature, "b c f h w -> (b h w) f c") | |
else: | |
assert pose_feature.ndim == 3 | |
cross_attention_kwargs["pose_feature"] = pose_feature | |
if isinstance(self.processor, PoseAdaptorAttnProcessor): | |
return self.processor( | |
self, | |
hidden_states, | |
cross_attention_kwargs.pop('pose_feature'), | |
encoder_hidden_states=None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
elif hasattr(self.processor, "__call__"): | |
return self.processor.__call__( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
else: | |
return self.processor( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |