Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023, Haofan Wang, Qixun Wang, All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Conversion script for the LoRA's safetensors checkpoints. """ | |
import argparse | |
import torch | |
from safetensors.torch import load_file | |
from diffusers import StableDiffusionPipeline | |
import pdb | |
def convert_motion_lora_ckpt_to_diffusers(pipeline, state_dict, alpha=1.0): | |
# directly update weight in diffusers model | |
for key in state_dict: | |
# only process lora down key | |
if "up." in key: continue | |
up_key = key.replace(".down.", ".up.") | |
model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "") | |
model_key = model_key.replace("to_out.", "to_out.0.") | |
layer_infos = model_key.split(".")[:-1] | |
curr_layer = pipeline.unet | |
while len(layer_infos) > 0: | |
temp_name = layer_infos.pop(0) | |
curr_layer = curr_layer.__getattr__(temp_name) | |
weight_down = state_dict[key] | |
weight_up = state_dict[up_key] | |
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device) | |
return pipeline | |
def convert_lora(pipeline, state_dict, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6): | |
# load base model | |
# pipeline = StableDiffusionPipeline.from_pretrained(base_model_path, torch_dtype=torch.float32) | |
# load LoRA weight from .safetensors | |
# state_dict = load_file(checkpoint_path) | |
visited = [] | |
# directly update weight in diffusers model | |
for key in state_dict: | |
# it is suggested to print out the key, it usually will be something like below | |
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" | |
# as we have set the alpha beforehand, so just skip | |
if ".alpha" in key or key in visited: | |
continue | |
if "text" in key: | |
layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") | |
curr_layer = pipeline.text_encoder | |
else: | |
layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") | |
curr_layer = pipeline.unet | |
# find the target layer | |
temp_name = layer_infos.pop(0) | |
while len(layer_infos) > -1: | |
try: | |
curr_layer = curr_layer.__getattr__(temp_name) | |
if len(layer_infos) > 0: | |
temp_name = layer_infos.pop(0) | |
elif len(layer_infos) == 0: | |
break | |
except Exception: | |
if len(temp_name) > 0: | |
temp_name += "_" + layer_infos.pop(0) | |
else: | |
temp_name = layer_infos.pop(0) | |
pair_keys = [] | |
if "lora_down" in key: | |
pair_keys.append(key.replace("lora_down", "lora_up")) | |
pair_keys.append(key) | |
else: | |
pair_keys.append(key) | |
pair_keys.append(key.replace("lora_up", "lora_down")) | |
# update weight | |
if len(state_dict[pair_keys[0]].shape) == 4: | |
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32) | |
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32) | |
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3).to(curr_layer.weight.data.device) | |
else: | |
weight_up = state_dict[pair_keys[0]].to(torch.float32) | |
weight_down = state_dict[pair_keys[1]].to(torch.float32) | |
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device) | |
# update visited list | |
for item in pair_keys: | |
visited.append(item) | |
return pipeline | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." | |
) | |
parser.add_argument( | |
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
parser.add_argument( | |
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" | |
) | |
parser.add_argument( | |
"--lora_prefix_text_encoder", | |
default="lora_te", | |
type=str, | |
help="The prefix of text encoder weight in safetensors", | |
) | |
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") | |
parser.add_argument( | |
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." | |
) | |
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") | |
args = parser.parse_args() | |
base_model_path = args.base_model_path | |
checkpoint_path = args.checkpoint_path | |
dump_path = args.dump_path | |
lora_prefix_unet = args.lora_prefix_unet | |
lora_prefix_text_encoder = args.lora_prefix_text_encoder | |
alpha = args.alpha | |
pipe = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) | |
pipe = pipe.to(args.device) | |
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |