Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from typing import Optional | |
from diffusers.models.attention import TemporalBasicTransformerBlock, _chunked_feed_forward | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
class TemporalPoseCondTransformerBlock(TemporalBasicTransformerBlock): | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, # [bs * num_frame, h * w, c] | |
num_frames: int, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, # [bs * h * w, 1, c] | |
pose_feature: Optional[torch.FloatTensor] = None, # [bs, c, n_frame, h, w] | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_frames, seq_length, channels = hidden_states.shape | |
batch_size = batch_frames // num_frames | |
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels) | |
hidden_states = hidden_states.permute(0, 2, 1, 3) | |
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) # [bs * h * w, frame, c] | |
residual = hidden_states | |
hidden_states = self.norm_in(hidden_states) | |
if self._chunk_size is not None: | |
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
hidden_states = self.ff_in(hidden_states) | |
if self.is_res: | |
hidden_states = hidden_states + residual | |
norm_hidden_states = self.norm1(hidden_states) | |
pose_feature = pose_feature.permute(0, 3, 4, 2, 1).reshape(batch_size * seq_length, num_frames, -1) | |
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None, pose_feature=pose_feature) | |
hidden_states = attn_output + hidden_states | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = self.norm2(hidden_states) | |
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, pose_feature=pose_feature) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self._chunk_size is not None: | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.is_res: | |
hidden_states = ff_output + hidden_states | |
else: | |
hidden_states = ff_output | |
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels) | |
hidden_states = hidden_states.permute(0, 2, 1, 3) | |
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels) | |
return hidden_states |