Spaces:
Running
on
Zero
Running
on
Zero
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.cuda.amp as amp | |
import numpy as np | |
KEY_OUTPUT = 'metric_depth' | |
def extract_key(prediction, key): | |
if isinstance(prediction, dict): | |
return prediction[key] | |
return prediction | |
# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7) | |
class SILogLoss(nn.Module): | |
"""SILog loss (pixel-wise)""" | |
def __init__(self, beta=0.15): | |
super(SILogLoss, self).__init__() | |
self.name = 'SILog' | |
self.beta = beta | |
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False): | |
input = extract_key(input, KEY_OUTPUT) | |
if input.shape[-1] != target.shape[-1] and interpolate: | |
input = nn.functional.interpolate( | |
input, target.shape[-2:], mode='bilinear', align_corners=True) | |
intr_input = input | |
else: | |
intr_input = input | |
if target.ndim == 3: | |
target = target.unsqueeze(1) | |
if mask is not None: | |
if mask.ndim == 3: | |
mask = mask.unsqueeze(1) | |
input = input[mask] | |
target = target[mask] | |
with amp.autocast(enabled=False): # amp causes NaNs in this loss function | |
alpha = 1e-7 | |
g = torch.log(input + alpha) - torch.log(target + alpha) | |
# n, c, h, w = g.shape | |
# norm = 1/(h*w) | |
# Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2 | |
Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2) | |
loss = 10 * torch.sqrt(Dg) | |
if torch.isnan(loss): | |
print("Nan SILog loss") | |
print("input:", input.shape) | |
print("target:", target.shape) | |
print("G", torch.sum(torch.isnan(g))) | |
print("Input min max", torch.min(input), torch.max(input)) | |
print("Target min max", torch.min(target), torch.max(target)) | |
print("Dg", torch.isnan(Dg)) | |
print("loss", torch.isnan(loss)) | |
if not return_interpolated: | |
return loss | |
return loss, intr_input | |
def grad(x): | |
# x.shape : n, c, h, w | |
diff_x = x[..., 1:, 1:] - x[..., 1:, :-1] | |
diff_y = x[..., 1:, 1:] - x[..., :-1, 1:] | |
mag = diff_x**2 + diff_y**2 | |
# angle_ratio | |
angle = torch.atan(diff_y / (diff_x + 1e-10)) | |
return mag, angle | |
def grad_mask(mask): | |
return mask[..., 1:, 1:] & mask[..., 1:, :-1] & mask[..., :-1, 1:] | |
class GradL1Loss(nn.Module): | |
"""Gradient loss""" | |
def __init__(self): | |
super(GradL1Loss, self).__init__() | |
self.name = 'GradL1' | |
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False): | |
input = extract_key(input, KEY_OUTPUT) | |
if input.shape[-1] != target.shape[-1] and interpolate: | |
input = nn.functional.interpolate( | |
input, target.shape[-2:], mode='bilinear', align_corners=True) | |
intr_input = input | |
else: | |
intr_input = input | |
grad_gt = grad(target) | |
grad_pred = grad(input) | |
mask_g = grad_mask(mask) | |
loss = nn.functional.l1_loss(grad_pred[0][mask_g], grad_gt[0][mask_g]) | |
loss = loss + \ | |
nn.functional.l1_loss(grad_pred[1][mask_g], grad_gt[1][mask_g]) | |
if not return_interpolated: | |
return loss | |
return loss, intr_input | |
class OrdinalRegressionLoss(object): | |
def __init__(self, ord_num, beta, discretization="SID"): | |
self.ord_num = ord_num | |
self.beta = beta | |
self.discretization = discretization | |
def _create_ord_label(self, gt): | |
N,one, H, W = gt.shape | |
# print("gt shape:", gt.shape) | |
ord_c0 = torch.ones(N, self.ord_num, H, W).to(gt.device) | |
if self.discretization == "SID": | |
label = self.ord_num * torch.log(gt) / np.log(self.beta) | |
else: | |
label = self.ord_num * (gt - 1.0) / (self.beta - 1.0) | |
label = label.long() | |
mask = torch.linspace(0, self.ord_num - 1, self.ord_num, requires_grad=False) \ | |
.view(1, self.ord_num, 1, 1).to(gt.device) | |
mask = mask.repeat(N, 1, H, W).contiguous().long() | |
mask = (mask > label) | |
ord_c0[mask] = 0 | |
ord_c1 = 1 - ord_c0 | |
# implementation according to the paper. | |
# ord_label = torch.ones(N, self.ord_num * 2, H, W).to(gt.device) | |
# ord_label[:, 0::2, :, :] = ord_c0 | |
# ord_label[:, 1::2, :, :] = ord_c1 | |
# reimplementation for fast speed. | |
ord_label = torch.cat((ord_c0, ord_c1), dim=1) | |
return ord_label, mask | |
def __call__(self, prob, gt): | |
""" | |
:param prob: ordinal regression probability, N x 2*Ord Num x H x W, torch.Tensor | |
:param gt: depth ground truth, NXHxW, torch.Tensor | |
:return: loss: loss value, torch.float | |
""" | |
# N, C, H, W = prob.shape | |
valid_mask = gt > 0. | |
ord_label, mask = self._create_ord_label(gt) | |
# print("prob shape: {}, ord label shape: {}".format(prob.shape, ord_label.shape)) | |
entropy = -prob * ord_label | |
loss = torch.sum(entropy, dim=1)[valid_mask.squeeze(1)] | |
return loss.mean() | |
class DiscreteNLLLoss(nn.Module): | |
"""Cross entropy loss""" | |
def __init__(self, min_depth=1e-3, max_depth=10, depth_bins=64): | |
super(DiscreteNLLLoss, self).__init__() | |
self.name = 'CrossEntropy' | |
self.ignore_index = -(depth_bins + 1) | |
# self._loss_func = nn.NLLLoss(ignore_index=self.ignore_index) | |
self._loss_func = nn.CrossEntropyLoss(ignore_index=self.ignore_index) | |
self.min_depth = min_depth | |
self.max_depth = max_depth | |
self.depth_bins = depth_bins | |
self.alpha = 1 | |
self.zeta = 1 - min_depth | |
self.beta = max_depth + self.zeta | |
def quantize_depth(self, depth): | |
# depth : N1HW | |
# output : NCHW | |
# Quantize depth log-uniformly on [1, self.beta] into self.depth_bins bins | |
depth = torch.log(depth / self.alpha) / np.log(self.beta / self.alpha) | |
depth = depth * (self.depth_bins - 1) | |
depth = torch.round(depth) | |
depth = depth.long() | |
return depth | |
def _dequantize_depth(self, depth): | |
""" | |
Inverse of quantization | |
depth : NCHW -> N1HW | |
""" | |
# Get the center of the bin | |
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False): | |
input = extract_key(input, KEY_OUTPUT) | |
# assert torch.all(input <= 0), "Input should be negative" | |
if input.shape[-1] != target.shape[-1] and interpolate: | |
input = nn.functional.interpolate( | |
input, target.shape[-2:], mode='bilinear', align_corners=True) | |
intr_input = input | |
else: | |
intr_input = input | |
# assert torch.all(input)<=1) | |
if target.ndim == 3: | |
target = target.unsqueeze(1) | |
target = self.quantize_depth(target) | |
if mask is not None: | |
if mask.ndim == 3: | |
mask = mask.unsqueeze(1) | |
# Set the mask to ignore_index | |
mask = mask.long() | |
input = input * mask + (1 - mask) * self.ignore_index | |
target = target * mask + (1 - mask) * self.ignore_index | |
input = input.flatten(2) # N, nbins, H*W | |
target = target.flatten(1) # N, H*W | |
loss = self._loss_func(input, target) | |
if not return_interpolated: | |
return loss | |
return loss, intr_input | |
def compute_scale_and_shift(prediction, target, mask): | |
# system matrix: A = [[a_00, a_01], [a_10, a_11]] | |
a_00 = torch.sum(mask * prediction * prediction, (1, 2)) | |
a_01 = torch.sum(mask * prediction, (1, 2)) | |
a_11 = torch.sum(mask, (1, 2)) | |
# right hand side: b = [b_0, b_1] | |
b_0 = torch.sum(mask * prediction * target, (1, 2)) | |
b_1 = torch.sum(mask * target, (1, 2)) | |
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b | |
x_0 = torch.zeros_like(b_0) | |
x_1 = torch.zeros_like(b_1) | |
det = a_00 * a_11 - a_01 * a_01 | |
# A needs to be a positive definite matrix. | |
valid = det > 0 | |
x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / det[valid] | |
x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / det[valid] | |
return x_0, x_1 | |
class ScaleAndShiftInvariantLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.name = "SSILoss" | |
def forward(self, prediction, target, mask, interpolate=True, return_interpolated=False): | |
if prediction.shape[-1] != target.shape[-1] and interpolate: | |
prediction = nn.functional.interpolate(prediction, target.shape[-2:], mode='bilinear', align_corners=True) | |
intr_input = prediction | |
else: | |
intr_input = prediction | |
prediction, target, mask = prediction.squeeze(), target.squeeze(), mask.squeeze() | |
assert prediction.shape == target.shape, f"Shape mismatch: Expected same shape but got {prediction.shape} and {target.shape}." | |
scale, shift = compute_scale_and_shift(prediction, target, mask) | |
scaled_prediction = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1) | |
loss = nn.functional.l1_loss(scaled_prediction[mask], target[mask]) | |
if not return_interpolated: | |
return loss | |
return loss, intr_input | |
if __name__ == '__main__': | |
# Tests for DiscreteNLLLoss | |
celoss = DiscreteNLLLoss() | |
print(celoss(torch.rand(4, 64, 26, 32)*10, torch.rand(4, 1, 26, 32)*10, )) | |
d = torch.Tensor([6.59, 3.8, 10.0]) | |
print(celoss.dequantize_depth(celoss.quantize_depth(d))) | |