wzhouxiff
init
38e3f9b
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import torch
import torch.nn as nn
import numpy as np
from torchvision.transforms import Normalize
def denormalize(x):
"""Reverses the imagenet normalization applied to the input.
Args:
x (torch.Tensor - shape(N,3,H,W)): input tensor
Returns:
torch.Tensor - shape(N,3,H,W): Denormalized input
"""
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device)
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device)
return x * std + mean
def get_activation(name, bank):
def hook(model, input, output):
bank[name] = output
return hook
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
print("Params passed to Resize transform:")
print("\twidth: ", width)
print("\theight: ", height)
print("\tresize_target: ", resize_target)
print("\tkeep_aspect_ratio: ", keep_aspect_ratio)
print("\tensure_multiple_of: ", ensure_multiple_of)
print("\tresize_method: ", resize_method)
self.__width = width
self.__height = height
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of)
* self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of)
* self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, x):
width, height = self.get_size(*x.shape[-2:][::-1])
return nn.functional.interpolate(x, (height, width), mode='bilinear', align_corners=True)
class PrepForMidas(object):
def __init__(self, resize_mode="minimal", keep_aspect_ratio=True, img_size=384, do_resize=True):
if isinstance(img_size, int):
img_size = (img_size, img_size)
net_h, net_w = img_size
self.normalization = Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
self.resizer = Resize(net_w, net_h, keep_aspect_ratio=keep_aspect_ratio, ensure_multiple_of=32, resize_method=resize_mode) \
if do_resize else nn.Identity()
def __call__(self, x):
return self.normalization(self.resizer(x))
class MidasCore(nn.Module):
def __init__(self, midas, trainable=False, fetch_features=True, layer_names=('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1'), freeze_bn=False, keep_aspect_ratio=True,
img_size=384, **kwargs):
"""Midas Base model used for multi-scale feature extraction.
Args:
midas (torch.nn.Module): Midas model.
trainable (bool, optional): Train midas model. Defaults to False.
fetch_features (bool, optional): Extract multi-scale features. Defaults to True.
layer_names (tuple, optional): Layers used for feature extraction. Order = (head output features, last layer features, ...decoder features). Defaults to ('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1').
freeze_bn (bool, optional): Freeze BatchNorm. Generally results in better finetuning performance. Defaults to False.
keep_aspect_ratio (bool, optional): Keep the aspect ratio of input images while resizing. Defaults to True.
img_size (int, tuple, optional): Input resolution. Defaults to 384.
"""
super().__init__()
self.core = midas
self.output_channels = None
self.core_out = {}
self.trainable = trainable
self.fetch_features = fetch_features
# midas.scratch.output_conv = nn.Identity()
self.handles = []
# self.layer_names = ['out_conv','l4_rn', 'r4', 'r3', 'r2', 'r1']
self.layer_names = layer_names
self.set_trainable(trainable)
self.set_fetch_features(fetch_features)
self.prep = PrepForMidas(keep_aspect_ratio=keep_aspect_ratio,
img_size=img_size, do_resize=kwargs.get('do_resize', True))
if freeze_bn:
self.freeze_bn()
def set_trainable(self, trainable):
self.trainable = trainable
if trainable:
self.unfreeze()
else:
self.freeze()
return self
def set_fetch_features(self, fetch_features):
self.fetch_features = fetch_features
if fetch_features:
if len(self.handles) == 0:
self.attach_hooks(self.core)
else:
self.remove_hooks()
return self
def freeze(self):
for p in self.parameters():
p.requires_grad = False
self.trainable = False
return self
def unfreeze(self):
for p in self.parameters():
p.requires_grad = True
self.trainable = True
return self
def freeze_bn(self):
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
return self
def forward(self, x, denorm=False, return_rel_depth=False):
with torch.no_grad():
if denorm:
x = denormalize(x)
x = self.prep(x)
# print("Shape after prep: ", x.shape)
with torch.set_grad_enabled(self.trainable):
# print("Input size to Midascore", x.shape)
rel_depth = self.core(x)
# print("Output from midas shape", rel_depth.shape)
if not self.fetch_features:
return rel_depth
out = [self.core_out[k] for k in self.layer_names]
if return_rel_depth:
return rel_depth, out
return out
def get_rel_pos_params(self):
for name, p in self.core.pretrained.named_parameters():
if "relative_position" in name:
yield p
def get_enc_params_except_rel_pos(self):
for name, p in self.core.pretrained.named_parameters():
if "relative_position" not in name:
yield p
def freeze_encoder(self, freeze_rel_pos=False):
if freeze_rel_pos:
for p in self.core.pretrained.parameters():
p.requires_grad = False
else:
for p in self.get_enc_params_except_rel_pos():
p.requires_grad = False
return self
def attach_hooks(self, midas):
if len(self.handles) > 0:
self.remove_hooks()
if "out_conv" in self.layer_names:
self.handles.append(list(midas.scratch.output_conv.children())[
3].register_forward_hook(get_activation("out_conv", self.core_out)))
if "r4" in self.layer_names:
self.handles.append(midas.scratch.refinenet4.register_forward_hook(
get_activation("r4", self.core_out)))
if "r3" in self.layer_names:
self.handles.append(midas.scratch.refinenet3.register_forward_hook(
get_activation("r3", self.core_out)))
if "r2" in self.layer_names:
self.handles.append(midas.scratch.refinenet2.register_forward_hook(
get_activation("r2", self.core_out)))
if "r1" in self.layer_names:
self.handles.append(midas.scratch.refinenet1.register_forward_hook(
get_activation("r1", self.core_out)))
if "l4_rn" in self.layer_names:
self.handles.append(midas.scratch.layer4_rn.register_forward_hook(
get_activation("l4_rn", self.core_out)))
return self
def remove_hooks(self):
for h in self.handles:
h.remove()
return self
def __del__(self):
self.remove_hooks()
def set_output_channels(self, model_type):
self.output_channels = MIDAS_SETTINGS[model_type]
@staticmethod
def build(midas_model_type="DPT_BEiT_L_384", train_midas=False, use_pretrained_midas=True, fetch_features=False, freeze_bn=True, force_keep_ar=False, force_reload=False, **kwargs):
if midas_model_type not in MIDAS_SETTINGS:
raise ValueError(
f"Invalid model type: {midas_model_type}. Must be one of {list(MIDAS_SETTINGS.keys())}")
if "img_size" in kwargs:
kwargs = MidasCore.parse_img_size(kwargs)
img_size = kwargs.pop("img_size", [384, 384])
print("img_size", img_size)
midas = torch.hub.load("intel-isl/MiDaS", midas_model_type,
pretrained=use_pretrained_midas, force_reload=force_reload)
kwargs.update({'keep_aspect_ratio': force_keep_ar})
midas_core = MidasCore(midas, trainable=train_midas, fetch_features=fetch_features,
freeze_bn=freeze_bn, img_size=img_size, **kwargs)
midas_core.set_output_channels(midas_model_type)
return midas_core
@staticmethod
def build_from_config(config):
return MidasCore.build(**config)
@staticmethod
def parse_img_size(config):
assert 'img_size' in config
if isinstance(config['img_size'], str):
assert "," in config['img_size'], "img_size should be a string with comma separated img_size=H,W"
config['img_size'] = list(map(int, config['img_size'].split(",")))
assert len(
config['img_size']) == 2, "img_size should be a string with comma separated img_size=H,W"
elif isinstance(config['img_size'], int):
config['img_size'] = [config['img_size'], config['img_size']]
else:
assert isinstance(config['img_size'], list) and len(
config['img_size']) == 2, "img_size should be a list of H,W"
return config
nchannels2models = {
tuple([256]*5): ["DPT_BEiT_L_384", "DPT_BEiT_L_512", "DPT_BEiT_B_384", "DPT_SwinV2_L_384", "DPT_SwinV2_B_384", "DPT_SwinV2_T_256", "DPT_Large", "DPT_Hybrid"],
(512, 256, 128, 64, 64): ["MiDaS_small"]
}
# Model name to number of output channels
MIDAS_SETTINGS = {m: k for k, v in nchannels2models.items()
for m in v
}