Spaces:
Running
on
Zero
Running
on
Zero
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import torch | |
import torch.nn as nn | |
def exp_attractor(dx, alpha: float = 300, gamma: int = 2): | |
"""Exponential attractor: dc = exp(-alpha*|dx|^gamma) * dx , where dx = a - c, a = attractor point, c = bin center, dc = shift in bin centermmary for exp_attractor | |
Args: | |
dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center. | |
alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300. | |
gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2. | |
Returns: | |
torch.Tensor : Delta shifts - dc; New bin centers = Old bin centers + dc | |
""" | |
return torch.exp(-alpha*(torch.abs(dx)**gamma)) * (dx) | |
def inv_attractor(dx, alpha: float = 300, gamma: int = 2): | |
"""Inverse attractor: dc = dx / (1 + alpha*dx^gamma), where dx = a - c, a = attractor point, c = bin center, dc = shift in bin center | |
This is the default one according to the accompanying paper. | |
Args: | |
dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center. | |
alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300. | |
gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2. | |
Returns: | |
torch.Tensor: Delta shifts - dc; New bin centers = Old bin centers + dc | |
""" | |
return dx.div(1+alpha*dx.pow(gamma)) | |
class AttractorLayer(nn.Module): | |
def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10, | |
alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False): | |
""" | |
Attractor layer for bin centers. Bin centers are bounded on the interval (min_depth, max_depth) | |
""" | |
super().__init__() | |
self.n_attractors = n_attractors | |
self.n_bins = n_bins | |
self.min_depth = min_depth | |
self.max_depth = max_depth | |
self.alpha = alpha | |
self.gamma = gamma | |
self.kind = kind | |
self.attractor_type = attractor_type | |
self.memory_efficient = memory_efficient | |
self._net = nn.Sequential( | |
nn.Conv2d(in_features, mlp_dim, 1, 1, 0), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(mlp_dim, n_attractors*2, 1, 1, 0), # x2 for linear norm | |
nn.ReLU(inplace=True) | |
) | |
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False): | |
""" | |
Args: | |
x (torch.Tensor) : feature block; shape - n, c, h, w | |
b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w | |
Returns: | |
tuple(torch.Tensor,torch.Tensor) : new bin centers normed and scaled; shape - n, nbins, h, w | |
""" | |
if prev_b_embedding is not None: | |
if interpolate: | |
prev_b_embedding = nn.functional.interpolate( | |
prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True) | |
x = x + prev_b_embedding | |
A = self._net(x) | |
eps = 1e-3 | |
A = A + eps | |
n, c, h, w = A.shape | |
A = A.view(n, self.n_attractors, 2, h, w) | |
A_normed = A / A.sum(dim=2, keepdim=True) # n, a, 2, h, w | |
A_normed = A[:, :, 0, ...] # n, na, h, w | |
b_prev = nn.functional.interpolate( | |
b_prev, (h, w), mode='bilinear', align_corners=True) | |
b_centers = b_prev | |
if self.attractor_type == 'exp': | |
dist = exp_attractor | |
else: | |
dist = inv_attractor | |
if not self.memory_efficient: | |
func = {'mean': torch.mean, 'sum': torch.sum}[self.kind] | |
# .shape N, nbins, h, w | |
delta_c = func(dist(A_normed.unsqueeze( | |
2) - b_centers.unsqueeze(1)), dim=1) | |
else: | |
delta_c = torch.zeros_like(b_centers, device=b_centers.device) | |
for i in range(self.n_attractors): | |
# .shape N, nbins, h, w | |
delta_c += dist(A_normed[:, i, ...].unsqueeze(1) - b_centers) | |
if self.kind == 'mean': | |
delta_c = delta_c / self.n_attractors | |
b_new_centers = b_centers + delta_c | |
B_centers = (self.max_depth - self.min_depth) * \ | |
b_new_centers + self.min_depth | |
B_centers, _ = torch.sort(B_centers, dim=1) | |
B_centers = torch.clip(B_centers, self.min_depth, self.max_depth) | |
return b_new_centers, B_centers | |
class AttractorLayerUnnormed(nn.Module): | |
def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10, | |
alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False): | |
""" | |
Attractor layer for bin centers. Bin centers are unbounded | |
""" | |
super().__init__() | |
self.n_attractors = n_attractors | |
self.n_bins = n_bins | |
self.min_depth = min_depth | |
self.max_depth = max_depth | |
self.alpha = alpha | |
self.gamma = gamma | |
self.kind = kind | |
self.attractor_type = attractor_type | |
self.memory_efficient = memory_efficient | |
self._net = nn.Sequential( | |
nn.Conv2d(in_features, mlp_dim, 1, 1, 0), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(mlp_dim, n_attractors, 1, 1, 0), | |
nn.Softplus() | |
) | |
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False): | |
""" | |
Args: | |
x (torch.Tensor) : feature block; shape - n, c, h, w | |
b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w | |
Returns: | |
tuple(torch.Tensor,torch.Tensor) : new bin centers unbounded; shape - n, nbins, h, w. Two outputs just to keep the API consistent with the normed version | |
""" | |
if prev_b_embedding is not None: | |
if interpolate: | |
prev_b_embedding = nn.functional.interpolate( | |
prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True) | |
x = x + prev_b_embedding | |
A = self._net(x) | |
n, c, h, w = A.shape | |
b_prev = nn.functional.interpolate( | |
b_prev, (h, w), mode='bilinear', align_corners=True) | |
b_centers = b_prev | |
if self.attractor_type == 'exp': | |
dist = exp_attractor | |
else: | |
dist = inv_attractor | |
if not self.memory_efficient: | |
func = {'mean': torch.mean, 'sum': torch.sum}[self.kind] | |
# .shape N, nbins, h, w | |
delta_c = func( | |
dist(A.unsqueeze(2) - b_centers.unsqueeze(1)), dim=1) | |
else: | |
delta_c = torch.zeros_like(b_centers, device=b_centers.device) | |
for i in range(self.n_attractors): | |
delta_c += dist(A[:, i, ...].unsqueeze(1) - | |
b_centers) # .shape N, nbins, h, w | |
if self.kind == 'mean': | |
delta_c = delta_c / self.n_attractors | |
b_new_centers = b_centers + delta_c | |
B_centers = b_new_centers | |
return b_new_centers, B_centers | |