Spaces:
Running
on
Zero
Running
on
Zero
// Copyright (c) Meta Platforms, Inc. and affiliates. | |
// All rights reserved. | |
// This source code is licensed under the license found in the | |
// LICENSE file in the root directory of this source tree. | |
// adapted from https://github.com/zsef123/Connected_components_PyTorch | |
// with license found in the LICENSE_cctorch file in the root directory. | |
// 2d | |
namespace cc2d { | |
template <typename T> | |
__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) { | |
return (bitmap >> pos) & 1; | |
} | |
__device__ int32_t find(const int32_t* s_buf, int32_t n) { | |
while (s_buf[n] != n) | |
n = s_buf[n]; | |
return n; | |
} | |
__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) { | |
const int32_t id = n; | |
while (s_buf[n] != n) { | |
n = s_buf[n]; | |
s_buf[id] = n; | |
} | |
return n; | |
} | |
__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) { | |
bool done; | |
do { | |
a = find(s_buf, a); | |
b = find(s_buf, b); | |
if (a < b) { | |
int32_t old = atomicMin(s_buf + b, a); | |
done = (old == b); | |
b = old; | |
} else if (b < a) { | |
int32_t old = atomicMin(s_buf + a, b); | |
done = (old == a); | |
a = old; | |
} else | |
done = true; | |
} while (!done); | |
} | |
__global__ void | |
init_labeling(int32_t* label, const uint32_t W, const uint32_t H) { | |
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; | |
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; | |
const uint32_t idx = row * W + col; | |
if (row < H && col < W) | |
label[idx] = idx; | |
} | |
__global__ void | |
merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) { | |
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; | |
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; | |
const uint32_t idx = row * W + col; | |
if (row >= H || col >= W) | |
return; | |
uint32_t P = 0; | |
if (img[idx]) | |
P |= 0x777; | |
if (row + 1 < H && img[idx + W]) | |
P |= 0x777 << 4; | |
if (col + 1 < W && img[idx + 1]) | |
P |= 0x777 << 1; | |
if (col == 0) | |
P &= 0xEEEE; | |
if (col + 1 >= W) | |
P &= 0x3333; | |
else if (col + 2 >= W) | |
P &= 0x7777; | |
if (row == 0) | |
P &= 0xFFF0; | |
if (row + 1 >= H) | |
P &= 0xFF; | |
if (P > 0) { | |
// If need check about top-left pixel(if flag the first bit) and hit the | |
// top-left pixel | |
if (hasBit(P, 0) && img[idx - W - 1]) { | |
union_(label, idx, idx - 2 * W - 2); // top left block | |
} | |
if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1])) | |
union_(label, idx, idx - 2 * W); // top bottom block | |
if (hasBit(P, 3) && img[idx + 2 - W]) | |
union_(label, idx, idx - 2 * W + 2); // top right block | |
if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1])) | |
union_(label, idx, idx - 2); // just left block | |
} | |
} | |
__global__ void compression(int32_t* label, const int32_t W, const int32_t H) { | |
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; | |
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; | |
const uint32_t idx = row * W + col; | |
if (row < H && col < W) | |
find_n_compress(label, idx); | |
} | |
__global__ void final_labeling( | |
const uint8_t* img, | |
int32_t* label, | |
const int32_t W, | |
const int32_t H) { | |
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; | |
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; | |
const uint32_t idx = row * W + col; | |
if (row >= H || col >= W) | |
return; | |
int32_t y = label[idx] + 1; | |
if (img[idx]) | |
label[idx] = y; | |
else | |
label[idx] = 0; | |
if (col + 1 < W) { | |
if (img[idx + 1]) | |
label[idx + 1] = y; | |
else | |
label[idx + 1] = 0; | |
if (row + 1 < H) { | |
if (img[idx + W + 1]) | |
label[idx + W + 1] = y; | |
else | |
label[idx + W + 1] = 0; | |
} | |
} | |
if (row + 1 < H) { | |
if (img[idx + W]) | |
label[idx + W] = y; | |
else | |
label[idx + W] = 0; | |
} | |
} | |
__global__ void init_counting( | |
const int32_t* label, | |
int32_t* count_init, | |
const int32_t W, | |
const int32_t H) { | |
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); | |
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); | |
const uint32_t idx = row * W + col; | |
if (row >= H || col >= W) | |
return; | |
int32_t y = label[idx]; | |
if (y > 0) { | |
int32_t count_idx = y - 1; | |
atomicAdd(count_init + count_idx, 1); | |
} | |
} | |
__global__ void final_counting( | |
const int32_t* label, | |
const int32_t* count_init, | |
int32_t* count_final, | |
const int32_t W, | |
const int32_t H) { | |
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); | |
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); | |
const uint32_t idx = row * W + col; | |
if (row >= H || col >= W) | |
return; | |
int32_t y = label[idx]; | |
if (y > 0) { | |
int32_t count_idx = y - 1; | |
count_final[idx] = count_init[count_idx]; | |
} else { | |
count_final[idx] = 0; | |
} | |
} | |
} // namespace cc2d | |
std::vector<torch::Tensor> get_connected_componnets( | |
const torch::Tensor& inputs) { | |
AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor"); | |
AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape"); | |
AT_ASSERTM( | |
inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type"); | |
const uint32_t N = inputs.size(0); | |
const uint32_t C = inputs.size(1); | |
const uint32_t H = inputs.size(2); | |
const uint32_t W = inputs.size(3); | |
AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape"); | |
AT_ASSERTM((H % 2) == 0, "height must be an even number"); | |
AT_ASSERTM((W % 2) == 0, "width must be an even number"); | |
// label must be uint32_t | |
auto label_options = | |
torch::TensorOptions().dtype(torch::kInt32).device(inputs.device()); | |
torch::Tensor labels = torch::zeros({N, C, H, W}, label_options); | |
torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options); | |
torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options); | |
dim3 grid = dim3( | |
((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS, | |
((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS); | |
dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS); | |
dim3 grid_count = | |
dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS); | |
dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
for (int n = 0; n < N; n++) { | |
uint32_t offset = n * H * W; | |
cc2d::init_labeling<<<grid, block, 0, stream>>>( | |
labels.data_ptr<int32_t>() + offset, W, H); | |
cc2d::merge<<<grid, block, 0, stream>>>( | |
inputs.data_ptr<uint8_t>() + offset, | |
labels.data_ptr<int32_t>() + offset, | |
W, | |
H); | |
cc2d::compression<<<grid, block, 0, stream>>>( | |
labels.data_ptr<int32_t>() + offset, W, H); | |
cc2d::final_labeling<<<grid, block, 0, stream>>>( | |
inputs.data_ptr<uint8_t>() + offset, | |
labels.data_ptr<int32_t>() + offset, | |
W, | |
H); | |
// get the counting of each pixel | |
cc2d::init_counting<<<grid_count, block_count, 0, stream>>>( | |
labels.data_ptr<int32_t>() + offset, | |
counts_init.data_ptr<int32_t>() + offset, | |
W, | |
H); | |
cc2d::final_counting<<<grid_count, block_count, 0, stream>>>( | |
labels.data_ptr<int32_t>() + offset, | |
counts_init.data_ptr<int32_t>() + offset, | |
counts_final.data_ptr<int32_t>() + offset, | |
W, | |
H); | |
} | |
// returned values are [labels, counts] | |
std::vector<torch::Tensor> outputs; | |
outputs.push_back(labels); | |
outputs.push_back(counts_final); | |
return outputs; | |
} | |
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { | |
m.def( | |
"get_connected_componnets", | |
&get_connected_componnets, | |
"get_connected_componnets"); | |
} | |