Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,260 Bytes
4342954 6013cb0 eee6c85 4342954 e3e1936 ef0eb1c e3e1936 4342954 ef0eb1c 4342954 e3e1936 7d60aec 4342954 237c7d9 4342954 6013cb0 4342954 6013cb0 9633dc9 103dcbe 9633dc9 6013cb0 eee6c85 4342954 c515dbd 4342954 6013cb0 4342954 6013cb0 4342954 c515dbd 4342954 6013cb0 4342954 6013cb0 c515dbd 4342954 c515dbd 6013cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import torch
torch.jit.script = lambda f: f
import spaces
import numpy as np
from diffusers import (
ControlNetModel,
StableDiffusionControlNetPipeline,
UniPCMultistepScheduler,
)
import gradio as gr
from huggingface_hub import hf_hub_download
from annotator.util import resize_image, HWC3
from annotator.midas import DepthDetector
from annotator.dsine_local import NormalDetector
from annotator.upernet import SegmDetector
controlnet_checkpoint = "kujiale-ai/controlnet-layout"
# Initialize pipeline
controlnet = ControlNetModel.from_pretrained(
controlnet_checkpoint,
subfolder="control_v1_sd15_layout_fp16",
torch_dtype=torch.float16,
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"stablediffusionapi/realistic-vision-v51", controlnet=controlnet, torch_dtype=torch.float16
).to("cuda")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
apply_depth = DepthDetector()
apply_normal = NormalDetector(hf_hub_download("camenduru/DSINE", filename="dsine.pt"))
apply_segm = SegmDetector()
layout_examples = [
[
"examples/layout_input.jpg",
"A modern bedroom",
"examples/layout_output.jpg",
],
[
"examples/living_and_dining_room_input.jpg",
"A modern living and dining room",
"examples/living_and_dining_room_output.jpg",
],
[
"examples/living_room_input.png",
"A living room",
"examples/living_room_output.jpg",
],
[
"examples/kitchen_input.jpg",
"A furnished kitchen",
"examples/kitchen_output.jpg",
],
]
@spaces.GPU(duration=20)
def generate(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
steps,
strength,
guidance_scale,
seed,
):
color_image = resize_image(HWC3(input_image), image_resolution)
# set seed
np.random.seed(seed)
torch.manual_seed(seed)
with torch.no_grad():
depth_image = apply_depth(color_image)
normal_image = apply_normal(color_image)
segm_image = apply_segm(color_image)
# Prepare Layout Control Image
depth_image = np.array(depth_image, dtype=np.float32) / 255.0
depth_image = torch.from_numpy(depth_image[:, :, None])[None].permute(
0, 3, 1, 2
)
normal_image = np.array(normal_image, dtype=np.float32)
normal_image = normal_image / 127.5 - 1.0
normal_image = torch.from_numpy(normal_image)[None].permute(0, 3, 1, 2)
segm_image = np.array(segm_image, dtype=np.float32) / 255.0
segm_image = torch.from_numpy(segm_image)[None].permute(0, 3, 1, 2)
control_image = torch.cat([depth_image, normal_image, segm_image], dim=1)
generator = torch.Generator(device="cuda").manual_seed(seed)
images = pipe(
prompt + a_prompt,
negative_prompt=n_prompt,
num_images_per_prompt=num_samples,
num_inference_steps=steps,
image=control_image,
generator=generator,
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(strength),
).images
return images
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## KuJiaLe Layout ControlNet Demo")
with gr.Row():
gr.Markdown(
"### Checkout our released model at [kujiale-ai/controlnet-layout](https://huggingface.co/kujiale-ai/controlnet-layout)"
)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(
sources="upload", type="numpy", label="Input Image", height=512
)
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(value="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Images", minimum=1, maximum=2, value=1, step=1
)
image_resolution = gr.Slider(
label="Image Resolution",
minimum=512,
maximum=768,
value=768,
step=64,
)
strength = gr.Slider(
label="Control Strength",
minimum=0.0,
maximum=2.0,
value=1.0,
step=0.1,
)
steps = gr.Slider(
label="Steps", minimum=1, maximum=50, value=25, step=1
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
value=7.5,
step=0.1,
)
seed = gr.Slider(
label="Seed", minimum=-1, maximum=2147483647, value=1, step=1
)
a_prompt = gr.Textbox(
label="Added Prompt", value="best quality, extremely detailed"
)
n_prompt = gr.Textbox(
label="Negative Prompt",
value="longbody, lowres, bad anatomy, human, extra digit, fewer digits, cropped, worst quality, low quality",
)
with gr.Column():
image_gallery = gr.Gallery(
label="Output",
show_label=False,
elem_id="gallery",
height=512,
object_fit="contain",
)
with gr.Row():
dummy_image_for_outputs = gr.Image(visible=False, label="Result")
gr.Examples(
fn=lambda *args: [[args[-1]], args[-2]],
examples=layout_examples,
inputs=[input_image, prompt, dummy_image_for_outputs],
outputs=[image_gallery, prompt],
run_on_click=True,
examples_per_page=1024,
)
ips = [
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
steps,
strength,
guidance_scale,
seed,
]
run_button.click(fn=generate, inputs=ips, outputs=[image_gallery])
block.launch(server_name="0.0.0.0")
|