File size: 3,384 Bytes
0ea1ca0
cc307c2
0ea1ca0
 
 
 
 
 
73b127f
 
 
 
 
 
42f99c5
b8b03ab
 
 
 
 
 
73b127f
a24b835
 
 
 
 
3d1236b
 
 
73b127f
3d1236b
 
 
 
a24b835
3d1236b
 
 
73b127f
3d1236b
 
0ea1ca0
 
73b127f
 
 
fe71c01
0ea1ca0
 
 
a24b835
21b1477
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import whisper_at as whisper

link = "https://github.com/YuanGongND/whisper-AT"
text = "[Github]"
paper_link = "https://arxiv.org/pdf/2307.03183.pdf"
paper_text = "[Paper]"

model_large = whisper.load_model("large-v1")
model_tiny = whisper.load_model("tiny")
model_tiny_en = whisper.load_model("tiny.en")
model_small = whisper.load_model("small")

mdl_dict = {"tiny": model_tiny, "tiny.en": model_tiny_en, "small": model_small, "large": model_large}

def round_time_resolution(time_resolution):
    multiple = float(time_resolution) / 0.4
    rounded_multiple = round(multiple)
    rounded_time_resolution = rounded_multiple * 0.4
    return rounded_time_resolution

def predict(audio_path_m, audio_path_t, model_size, time_resolution):
    # print(audio_path_m, audio_path_t)
    # print(type(audio_path_m), type(audio_path_t))
    #return audio_path_m, audio_path_t
    if ((audio_path_m is None) != (audio_path_t is None)) == False:
        return "Please upload and only upload one recording, either upload the audio file or record using microphone.", "Please upload and only upload one recording, either upload the audio file or record using microphone."
    else:
        audio_path = audio_path_m or audio_path_t
        audio_tagging_time_resolution = round_time_resolution(time_resolution)
        model = mdl_dict[model_size]
        result = model.transcribe(audio_path, at_time_res=audio_tagging_time_resolution)
        audio_tag_result = whisper.parse_at_label(result, language='follow_asr', top_k=5, p_threshold=-1, include_class_list=list(range(527)))
        asr_output = ""
        for segment in result['segments']:
          asr_output = asr_output + format(segment['start'], ".1f") + 's-' + format(segment['end'], ".1f") + 's: ' + segment['text'] + '\n'
        at_output = ""
        for segment in audio_tag_result:
            print(segment)
            at_output = at_output + format(segment['time']['start'], ".1f") + 's-' + format(segment['time']['end'], ".1f") + 's: ' + ', '.join([x[0] for x in segment['audio tags']]) + '\n'
            print(at_output)
        return asr_output, at_output

iface = gr.Interface(fn=predict,
                    inputs=[gr.Audio(type="filepath", source='microphone', label='Please either upload an audio file or record using the microphone.', show_label=True), gr.Audio(type="filepath"),
                            gr.Radio(["tiny", "tiny.en", "small", "large"], value='large', label="Model size", info="The larger the model, the better the performance and the slower the speed."),
                            gr.Textbox(value='10', label='Time Resolution in Seconds (Must be must be an integer multiple of 0.4, e.g., 0.4, 2, 10)')],
                    outputs=[gr.Textbox(label="Speech Output"), gr.Textbox(label="Audio Tag Output")],
                    cache_examples=True,
                    title="Quick Demo of Whisper-AT",
                    description="We are glad to introduce Whisper-AT - A new joint audio tagging and speech recognition model. It outputs background sound labels in addition to text." + f"<a href='{paper_link}'>{paper_text}</a> " + f"<a href='{link}'>{text}</a> <br>" +
                    "Whisper-AT is authored by Yuan Gong, Sameer Khurana, Leonid Karlinsky, and James Glass (MIT & MIT-IBM Watson AI Lab). It is an Interspeech 2023 paper.")
iface.launch(debug=True)