Spaces:
Running
Running
File size: 2,538 Bytes
0ea1ca0 cc307c2 0ea1ca0 e768900 42f99c5 b8b03ab 3d1236b 0ea1ca0 3d1236b fe71c01 0ea1ca0 569ebcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import whisper_at as whisper
link = "https://github.com/YuanGongND/whisper-AT"
text = "[Github]"
paper_link = "https://arxiv.org/pdf/2307.03183.pdf"
paper_text = "[Paper]"
model = whisper.load_model("tiny")
print('model loaded')
def round_time_resolution(time_resolution):
multiple = float(time_resolution) / 0.4
rounded_multiple = round(multiple)
rounded_time_resolution = rounded_multiple * 0.4
return rounded_time_resolution
def predict(audio_path_m, audio_path_t, time_resolution):
if (audio_path_m is None) != (audio_path_t is None):
return "Please only upload one recording, either upload it or record using microphone.", "Please only upload one recording, either upload it or record using microphone."
else:
audio_path = audio_path_m or audio_path_t
audio_tagging_time_resolution = round_time_resolution(time_resolution)
result = model.transcribe(audio_path, at_time_res=audio_tagging_time_resolution)
audio_tag_result = whisper.parse_at_label(result, language='follow_asr', top_k=5, p_threshold=-1, include_class_list=list(range(527)))
asr_output = ""
for segment in result['segments']:
asr_output = asr_output + str(segment['start']) + 's-' + str(segment['end']) + 's: ' + segment['text'] + '\n'
at_output = ""
for segment in audio_tag_result:
print(segment)
at_output = at_output + str(segment['time']['start']) + 's-' + str(segment['time']['end']) + 's: ' + ','.join([x[0] for x in segment['audio tags']]) + '\n'
print(at_output)
return asr_output, at_output
iface = gr.Interface(fn=predict,
inputs=[gr.Audio(type="filepath", source='microphone'), gr.Audio(type="filepath"), gr.Textbox(value='10', label='Time Resolution in Seconds (Must be must be an integer multiple of 0.4, e.g., 0.4, 2, 10)')],
outputs=[gr.Textbox(label="Speech Output"), gr.Textbox(label="Audio Tag Output")],
cache_examples=True,
title="Quick Demo of Whisper-AT",
description="We are glad to introduce Whisper-AT - A new joint audio tagging and speech recognition model. It outputs background sound labels in addition to text." + f"<a href='{paper_link}'>{paper_text}</a> " + f"<a href='{link}'>{text}</a> <br>" +
"Whisper-AT is authored by Yuan Gong, Sameer Khurana, Leonid Karlinsky, and James Glass (MIT & MIT-IBM Watson AI Lab).")
iface.launch(debug=True) |