yuanphon's picture
Create app.py
bf64851
import torch
import pickle
import cv2
import os
import numpy as np
from PIL import Image
from transformers import ViTForImageClassification, AutoImageProcessor, AdamW, ViTImageProcessor, VisionEncoderDecoderModel, AutoTokenizer
from torch.utils.data import DataLoader, TensorDataset
model_path = 'model'
train_pickle_path = 'train_data.pickle'
valid_pickle_path = 'valid_data.pickle'
image_directory = 'images'
test_image_path = 'test.jpg'
num_epochs = 5 # Fine-tune the model
label_list = ["小白", "巧巧", "冏媽", "乖狗", "花捲", "超人", "黑胖", "橘子"]
label_dictionary = {"小白": 0, "巧巧": 1, "冏媽": 2, "乖狗": 3, "花捲": 4, "超人": 5, "黑胖": 6, "橘子": 7}
num_classes = len(label_dictionary) # Adjust according to your classification task
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device("mps")
def data_generate(dataset):
images = []
labels = []
image_processor = AutoImageProcessor.from_pretrained('google/vit-large-patch16-224-in21k')
for folder_name in os.listdir(image_directory):
folder_path = os.path.join(image_directory, folder_name)
if os.path.isdir(folder_path):
for image_file in os.listdir(folder_path):
if image_file.startswith(dataset):
image_path = os.path.join(folder_path, image_file)
# print(image_path)
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = Image.fromarray(img)
img = img.resize((224, 224))
inputs = image_processor(images=img, return_tensors="pt")
images.append(inputs['pixel_values'].squeeze(0).numpy())
labels.append(int(folder_name.split('_')[0]))
images = np.array(images)
labels = np.array(labels)
# Now you can pickle this data
train_data = {'img': images, 'label': labels}
with open(f'{dataset}_data.pickle', 'wb') as f:
pickle.dump(train_data, f)
def train_model():
if not os.path.exists(valid_pickle_path):
data_generate('valid')
if not os.path.exists(train_pickle_path):
data_generate('train')
# Load the train and vaild
with open("train_data.pickle", "rb") as f:
train_data = pickle.load(f)
with open("valid_data.pickle", "rb") as f:
valid_data = pickle.load(f)
# Convert the dataset into torch tensors
train_inputs = torch.tensor(train_data["img"])
train_labels = torch.tensor(train_data["label"])
valid_inputs = torch.tensor(valid_data["img"])
valid_labels = torch.tensor(valid_data["label"])
# Create the TensorDataset
train_dataset = TensorDataset(train_inputs, train_labels)
valid_dataset = TensorDataset(valid_inputs, valid_labels)
# Create the DataLoader
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=16, shuffle=True)
# Define the model and move it to the GPU
model = ViTForImageClassification.from_pretrained('google/vit-large-patch16-224-in21k', num_labels=num_classes)
model.to(device)
# Define the optimizer
optimizer = AdamW(model.parameters(), lr=1e-4)
for epoch in range(num_epochs):
model.train()
total_loss = 0
for i, batch in enumerate(train_loader):
# Move batch to the GPU
batch = [r.to(device) for r in batch]
# Unpack the inputs from our dataloader
inputs, labels = batch
# Clear out the gradients (by default they accumulate)
optimizer.zero_grad()
# Forward pass
outputs = model(inputs, labels=labels)
# Compute loss
loss = outputs.loss
# Backward pass
loss.backward()
# Update parameters and take a step using the computed gradient
optimizer.step()
# Update the loss
total_loss += loss.item()
# print(f'{i}/{len(train_loader)} ')
# Get the average loss for the entire epoch
avg_loss = total_loss / len(train_loader)
# Print the loss
print('Epoch:', epoch + 1, 'Training Loss:', avg_loss)
# Evaluate the model on the validation set
model.eval()
total_correct = 0
for batch in valid_loader:
# Move batch to the GPU
batch = [t.to(device) for t in batch]
# Unpack the inputs from our dataloader
inputs, labels = batch
# Forward pass
with torch.no_grad():
outputs = model(inputs)
# Get the predictions
predictions = torch.argmax(outputs.logits, dim=1)
# Update the total correct
total_correct += torch.sum(predictions == labels)
# Calculate the accuracy
accuracy = total_correct / len(valid_dataset)
print('Validation accuracy:', accuracy.item())
model.save_pretrained("model")
def predict():
# Load the model
model = ViTForImageClassification.from_pretrained(model_path, num_labels=num_classes)
image_processor = AutoImageProcessor.from_pretrained('google/vit-large-patch16-224-in21k')
# Load the test data
# Load the image
img = cv2.imread(test_image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Resize the image to 224x224 pixels
img = Image.fromarray(img)
img = img.resize((224, 224))
# img to tensor
# Preprocess the image and generate features
inputs = image_processor(images=img, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_class_idx = logits.argmax(-1).item()
return label_list[predicted_class_idx] if probabilities.max().item() > 0.90 else '不是校狗'
def captioning():
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
images = []
for image_path in [test_image_path]:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds[-1]
def output(predict_class, caption):
conj = ['are', 'is', 'dog']
if predict_class == '不是校狗' or caption.find('dog') == -1:
print(f'{caption} ({predict_class})')
else:
for c in conj:
if caption.find(c) != -1:
print(f'{predict_class} is{caption[caption.find(c) + len(c):]}')
return
print(f'{caption} ({predict_class})')
if __name__ == '__main__':
if not os.path.exists(model_path):
train_model()
output(predict(), captioning())