import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import spaces # Load model and tokenizer device = "cuda" # the device to load the model onto tokenizer = AutoTokenizer.from_pretrained("yuchenlin/Rex-v0.1-1.5B", trust_remote_code=True, rex_size=3) model = AutoModelForCausalLM.from_pretrained( "yuchenlin/Rex-v0.1-1.5B", torch_dtype="auto" ) model.to(device) @spaces.GPU(enable_queue=True) def respond( message, history: list[tuple[str, str]], system_message, max_tokens=512, temperature=0.5, top_p=1.0, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens = max_tokens, temperature = temperature, top_p = top_p, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful AI assistant and your name is RexLM.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch(share=False)